首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple selective 1D experiment for the accurate and precise determination of residual proton–proton dipolar coupling constants of oligosaccharides is proposed. The technique is based on the concept of J‐modulated spectroscopy and provides coupling constants by fitting the peak intensities from a series of spectra to known transfer functions with a precision of ±0.02 Hz for splittings >0.3 Hz. This level of precision is possible owing to limiting the number of sites for polarization transfer. Selective pulses and pulsed field gradients are used for selective excitation and coherence selection, yielding clean, artefact‐free spectra. The technique is illustrated using trisaccharide samples in Pf1 phage. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Activation‐free copolymeric films possessing high selectivity to target proteins and low biofouling background are prepared via controlled radical polymerization. The copolymeric films are generated by surface‐initiated activators regenerated by electron transfer atom transfer radical polymerization (SI‐ARGET ATRP) of N‐acryloxysuccinimide (NAS) and oligo(ethylene glycol) methyl ether methacrylate (OEGMEMA) by controlling the molar feed ratio of the two monomers. The formation of copolymeric films is characterized by ellipsometry, contact angle goniometry, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The prepared copolymeric films are biotinylated without an activation step. Biotin–streptavidin association is employed as a model system to investigate both selective binding and the relevant signal‐to‐noise (S/N) ratio. When the molar feed ratio of NAS and OEGMEMA is 2:8, the copolymeric film is optimized to give the highest S/N ratio (339.8) according to surface plasmon resonance studies. The highly selective bioconjugation is used to generate micropatterns of rhodamine‐conjugated streptavidin on the copolymeric film. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 329–337  相似文献   

3.
A series of well‐defined amphiphilic star graft copolymers consisting of hydrophilic poly(acrylic acid) backbone and hydrophobic poly(propylene oxide) side chains were synthesized by the sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer nitroxide radical coupling (ATNRC) or single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction followed by the selective hydrolysis of poly(tert‐butyl acrylate) backbone. A Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate, was first homopolymerized via RAFT polymerization using a new star‐like chain‐transfer agent with four arms in a controlled way to give a well‐defined star‐like backbone with a narrow molecular weight distribution (Mw/Mn = 1.23). The grafting‐onto strategy was used to synthesize the well‐defined PtBA‐g‐PPO star graft copolymers with narrow molecular weight distributions (Mw/Mn = 1.14–1.25) via ATNRC or SET‐NRC reaction between the Br‐containing PtBA‐based star‐like backbone and poly(propylene oxide) with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group using CuBr/PMDETA or Cu/PMDETA as catalytic system. PAA‐g‐PPO amphiphilic star graft copolymers were obtained by the selective acidic hydrolysis of star‐like PtBA‐based backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media and brine were determined by the fluorescence probe technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2084–2097, 2010  相似文献   

4.
A spin state‐selective Heteronuclear Single‐Quantum Multiple‐Bond Connectivities (HSQMBC‐COSY) experiment is proposed to measure the sign and the magnitude of long‐range proton‐carbon coupling constants (nJ(CH); n > 1) either for protonated or for non‐protonated carbons in small molecules. The simple substitution of the selective 180° 1H pulse in the original selHSQMBC pulse scheme by a hard one allows the simultaneous evolution of both proton‐proton and proton‐carbon coupling constants during the refocusing period and enables a final COSY transfer between coupled protons. The successful implementation of the IPAP principle leads to separate mixed‐phase α/β cross‐peaks from which nJ(CH) values can be easily measured by analyzing their relative frequency displacements in the detected dimension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2‐(2‐hydroxyphenyl)‐2,3‐dihydroquinolin‐4(1 H)‐one. This system allows selective “turn‐on” fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited‐state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD‐DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples.  相似文献   

6.
Selective refocusing (GSERF or the recent PSYCHEDELIC) experiments were originally designed to determine all proton–proton coupling constants (JHH) for a selected proton resonance. They work for isolated signals on which selective excitation can be successfully applied but, as it happens in other selective experiments, fail for overlapped signals. To circumvent this limitation, a doubly‐selective TOCSY‐GSERF scheme is presented for the measurement of JHH in protons resonating in crowded regions. This new experiment takes advantage of the editing features of an initial TOCSY transfer to uncover hidden resonances that become accessible to perform the subsequent frequency‐selective refocusing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Group selectivity in the allylation of mixed (n‐butyl)(phenyl)zinc reagent can be controlled by changing reaction parameters. CuCN‐catalyzed allylation in tetrahydrofuran (THF)–hexamethylphosphoric triamide is n‐butyl selective and also γ‐selective in the presence of MgCl2, whereas CuI‐catalyzed allylation in THF in the presence of n‐Bu3P takes place with a n‐butyl transfer:phenyl transfer ratio of 23:77 and an α:γ transfer ratio of phenyl of 76:24. NiCl2(Ph3P)2‐catalyzed allylation in the presence of LiCl is phenyl selective with an α:γ ratio of 65:35. The reaction of methyl‐ or n‐butyl(aryl)zinc reagents with an allylic electrophile in THF at room temperature in the presence of NiCl2(Ph3P)2 catalyst and LiCl as an additive provides an atom‐economic alternative to aryl–allyl coupling using diarylzincs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Co‐conversion of alkane with another reactant over zeolite catalysts has emerged as a new approach to the long‐standing challenge of alkane transformation. With the aid of solid‐state NMR spectroscopy and GC‐MS analysis, it was found that the co‐conversion of propane and methanol can be readily initiated by hydride transfer at temperatures of ≥449 K over the acidic zeolite H‐ZSM‐5. The formation of 13C‐labeled methane and singly 13C‐labeled n‐butanes in selective labeling experiments provided the first evidence for the initial hydride transfer from propane to surface methoxy intermediates. The results not only provide new insight into carbocation chemistry of solid acids, but also shed light on the low‐temperature transformation of alkanes for industrial applications.  相似文献   

10.
The synthesis of N‐arylimidazoles substituted at the sterically encumbered 5‐position is a challenge for modern synthetic approaches. A new family of imidazolyl aryliodonium salts is reported, which serve as a stepping stone on the way to selective formation of N1‐aryl‐5‐iodoimidazoles. Iodine acts as a “universal” placeholder poised for replacement by aryl substituents. These new λ3‐iodanes are produced by treating the NH‐imidazole with ArI(OAc)2, and are converted to N1‐aryl‐5‐iodoimidazoles by a selective copper‐catalyzed aryl migration. The method tolerates a variety of aryl fragments and is also applicable to substituted imidazoles.  相似文献   

11.
Thiol‐containing amino acids (aminothiols) such as cysteine (Cys) and homocysteine (Hcy) play a key role in various biological processes including maintaining the homeostasis of biological thiols. However, abnormal levels of aminothiols are associated with a variety of diseases. The native chemical ligation (NCL) reaction has attracted great attention in the fields of chemistry and biology. NCL of peptide segments involves cascade reactions between a peptide‐α‐thioester and an N‐terminal cysteine peptide. In this work, we employed the NCL reaction mechanism to formulate a Förster resonance energy transfer (FRET) strategy for the design of ratiometric fluorescent probes that were selective toward aminothiols. On the basis of this new strategy, the ratiometric fluorescent probe 1 for aminothiols was judiciously designed. The new probe is highly selective toward aminothiols over other thiols and exhibits a very large variation (up to 160‐fold) in its fluorescence ratio (I458/I603). The new fluorescent probe is capable of ratiometric detection of aminothiols in newborn calf and human serum samples and is also suitable for ratiometric fluorescent imaging of aminothiols in living cells.  相似文献   

12.
Chemistry of Free Cyclic Vicinal Tricarbonyl Compounds (‘1,2,3‐Triones'). Part 2. Redox Reactions of 1,2,3‐Triones with Ene‐1,2‐diols (‘Reductones'), 2‐Alkoxy‐en‐1‐ols, Ene‐1,2‐diamines, and Related Species . Midstanding carbonyl groups of cyclic 1,2,3‐triones 4 possess outstanding electrophilic (electron‐pair accepting) as well as oxidizing (one‐electron accepting) properties. Their reactions with selected electron‐rich CC bonds as efficient nucleophiles (AN reactions) and as efficient reducing agents (SET (single electron transfer) reactions) are studied. In a few cases, short‐lived charge‐transfer colors could be observed. Particularly, free didehydro‐5,6‐O‐isopropyliden‐L ‐ascorbic acid ( 4g ), its O,C‐adduct 8g to 5,6‐O‐isopropylidene‐L ‐ascorbic acid ( 1g ), and – via an independent pathway – the ostensible C,C‐dimer 10a of mono‐dehydrodimedone reductone were prepared. Intermediate radical anions 4 .− can be considered to be ideal representatives of dicapto‐dative radicals. Novel large‐scale syntheses of 3,4‐dihydroxyfuran‐2(5H)‐one ( 1e ) and of its vicinal trione 4e are presented.  相似文献   

13.
The successful application of imidazole‐modified ketones in asymmetric anti‐selective Michael reactions with trans‐β‐nitroalkenes is presented by employing a newly developed 3‐bromothiophene‐modified chiral diamine ligand. The corresponding conjugate adduct was submitted to further transformations with Grignard reagents to solve the problem of α‐site selectivity of simple linear ketones. Additionally, the syn‐selective product was obtained by treating the anti‐selective adduct with a simple base. In this way, the site‐specific products for both diastereomers in the asymmetric conjugate addition of simple ketones to nitroalkenes can be obtained.  相似文献   

14.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

15.
A mesomeso‐linked diphenylamine‐fused porphyrin dimer and its methoxy‐substituted analogue were synthesized from a mesomeso‐linked porphyrin dimer by a reaction sequence involving Ir‐catalyzed β‐selective borylation, iodination, meso‐chlorination, and SNAr reactions with diarylamines followed by electron‐transfer‐mediated intramolecular double C?H/C?I coupling. While these dimers commonly display characteristic split Soret bands and small oxidation potentials, they produced different products upon oxidation with tris(4‐bromophenyl)aminium hexachloroantimonate. Namely, the diphenylamine‐fused porphyrin dimer was converted into a dicationic closed‐shell quinonoidal dimer, while the methoxy‐substituted dimer gave a mesomeso, β‐β doubly linked porphyrin dimer.  相似文献   

16.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
The photocatalyzed ortho‐selective migration on a pyridyl ring has been achieved for the site‐selective trifluoromethylative pyridylation of unactivated alkenes. The overall process is initiated by the selective addition of a CF3 radical to the alkene to provide a nucleophilic alkyl radical intermediate, which enables an intramolecular endo addition exclusively to the ortho‐position of the pyridinium salt. Both secondary and tertiary alkyl radicals are well‐suited for addition to the C2‐position of pyridinium salts to ultimately provide synthetically valuable C2‐fluoroalkyl functionalized pyridines. Moreover, the method was successfully applied to the reaction with P‐centered radicals. The utility of this transformation was further demonstrated by the late‐stage functionalization of complex bioactive molecules.  相似文献   

18.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

19.
Dopamine‐containing monomers, N‐3,4‐dihydroxybenzenethyl methacrylamide (DMA) and dimethylaminoethyl methacrylate (DMAEMA), are successfully copolymerized in a well‐controlled manner via ambient temperature single‐electron transfer initiation and propagation through the radical addition fragmentation chain transfer (SET‐RAFT) method. The controlled behaviors of the copolymerization are confirmed by the first‐order kinetic plots, the linear relationships between molecular weights, and the monomer conversions while keeping relatively narrow molecular weight distribution (Mw/Mn ≤ 1.45). Moreover, biomimetic self‐assembly of poly(N‐3,4‐dihydroxybenzenethyl methacrylamide‐co‐dimethylaminoethyl methacrylate) PDMA‐co‐PDMAEMA and inorganic particles are employed to prepare tunable honeycomb‐like porous hybrid particles (HPHPs) by regulating the predesigned chemical composition. In addition, the inorganic sacrificial templates are successfully selective etched for the formation of porous organic materials.

  相似文献   


20.
A series of well‐defined amphiphilic graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate)] (PPEGMEMA) side chains were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single‐electron‐transfer living radical polymerization (SET‐LRP) without any polymeric functional group transformation. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromoisobutanoyloxy)methyl)acrylate (tBBIBMA), was first prepared, which can be homopolymerized by RAFT to give a well‐defined PtBBIBMA homopolymer with a narrow molecular weight distribution (Mw/Mn = 1.15). This homopolymer with pendant Br initiation group in every repeating unit initiated SET‐LRP of PEGMEMA at 45 °C using CuBr/dHbpy as catalytic system to afford well‐defined PtBBIBMA‐g‐PPEGMEMA graft copolymers via the grafting‐from strategy. The self‐assembly behavior of the obtained graft copolymers in aqueous media was investigated by fluorescence spectroscopy and TEM. These copolymers were found to be stimuli‐responsive to both temperature and ions. Finally, poly(acrylic acid)‐g‐PPEGMEMA double hydrophilic graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PPEGMEMA side chains kept inert. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号