首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a variable neighborhood search approach for solving the one-commodity pickup-and-delivery travelling salesman problem. It is characterized by a set of customers such that each of the customers either supplies (pickup customers) or demands (delivery customers) a given amount of a single product, and by a vehicle, whose given capacity must not be exceeded, that starts at the depot and must visit each customer only once. The objective is to minimize the total length of the tour. Thus, the considered problem includes checking the existence of a feasible travelling salesman’s tour and designing the optimal travelling salesman’s tour, which are both NP-hard problems. We adapt a collection of neighborhood structures, k-opt, double-bridge and insertion operators mainly used for solving the classical travelling salesman problem. A binary indexed tree data structure is used, which enables efficient feasibility checking and updating of solutions in these neighborhoods. Our extensive computational analysis shows that the proposed variable neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solution quality and computational efforts. Moreover, we improve the best-known solutions of all benchmark instances from the literature (with 200 to 500 customers). We are also able to solve instances with up to 1000 customers.  相似文献   

2.
This paper presents some new heuristics based on variable neighborhood search to solve the vertex weighted k-cardinality tree problem. An efficient local search procedure is also developed for use within these heuristics. Our computational results demonstrate that the new heuristics substantially outperform the state-of-the-art methodologies, including a tabu search and genetic algorithm recently proposed in the literature. We also show that a decomposition approach is best for larger problem sizes than previously investigated. Thus, our findings advance in a significant way the capacity to solve this important class of problems.  相似文献   

3.
Automated graph-drawing systems utilize procedures to place vertices and arcs in order to produce graphs with desired properties. Incremental or dynamic procedures are those that preserve key characteristics when updating an existing drawing. These methods are particularly useful in areas such as planning and logistics, where updates are frequent. We propose a procedure based on the scatter search methodology that is adapted to the incremental drawing problem in hierarchical graphs. These drawings can be used to represent any acyclic graph. Comprehensive computational experiments are used to test the efficiency and effectiveness of the proposed procedure.  相似文献   

4.
In this paper, we address the optimization problem arising in some practical applications in which we want to maximize the minimum difference between the labels of adjacent elements. For example, in the context of location models, the elements can represent sensitive facilities or chemicals and their labels locations, and the objective is to locate (label) them in a way that avoids placing some of them too close together (since it can be risky). This optimization problem is referred to as the antibandwidth maximization problem (AMP) and, modeled in terms of graphs, consists of labeling the vertices with different integers or labels such that the minimum difference between the labels of adjacent vertices is maximized. This optimization problem is the dual of the well-known bandwidth problem and it is also known as the separation problem or directly as the dual bandwidth problem. In this paper, we first review the previous methods for the AMP and then propose a heuristic algorithm based on the variable neighborhood search methodology to obtain high quality solutions. One of our neighborhoods implements ejection chains which have been successfully applied in the context of tabu search. Our extensive experimentation with 236 previously reported instances shows that the proposed procedure outperforms existing methods in terms of solution quality.  相似文献   

5.
6.
7.
In this paper, we present two general variable neighborhood search (GVNS) based variants for solving the traveling salesman problem with draft limits (TSPDL), a recent extension of the traveling salesman problem. TSPDL arises in the context of maritime transportation. It consists of finding optimal Hamiltonian tour for a given ship which has to visit and deliver products to a set of ports while respecting the draft limit constraints. The proposed methods combine ideas in sequential variable neighborhood descent within GVNS. They are tested on a set of benchmarks from the literature as well as on a new one generated by us. Computational experiments show remarkable efficiency and effectiveness of our new approach. Moreover, new set of benchmarks instances is generated.  相似文献   

8.
In this paper, we study the multiobjective version of the set covering problem. To our knowledge, this problem has only been addressed in two papers before, and with two objectives and heuristic methods. We propose a new heuristic, based on the two-phase Pareto local search, with the aim of generating a good approximation of the Pareto efficient solutions. In the first phase of this method, the supported efficient solutions or a good approximation of these solutions is generated. Then, a neighborhood embedded in the Pareto local search is applied to generate non-supported efficient solutions. In order to get high quality results, two elaborate local search techniques are considered: a large neighborhood search and a variable neighborhood search. We intensively study the parameters of these two techniques. We compare our results with state-of-the-art results and we show that with our method, better results are obtained for different indicators.  相似文献   

9.
In the set of bicolored trees with given numbers of black and of white vertices we describe those for which the largest eigenvalue is extremal (maximal or minimal). The results are first obtained by the automated system AutoGraphiX, developed in GERAD (Montreal), and verified afterwards by theoretical means.  相似文献   

10.
Harmonic means clustering is a variant of minimum sum of squares clustering (which is sometimes called K-means clustering), designed to alleviate the dependance of the results on the choice of the initial solution. In the harmonic means clustering problem, the sum of harmonic averages of the distances from the data points to all cluster centroids is minimized. In this paper, we propose a variable neighborhood search heuristic for solving it. This heuristic has been tested on numerous datasets from the literature. It appears that our results compare favorably with recent ones from tabu search and simulated annealing heuristics.  相似文献   

11.
In the set of bicolored trees with given numbers of black and of white vertices we describe those for which the largest eigenvalue is extremal (maximal or minimal). The results are first obtained by the automated system AutoGraphiX, developed in GERAD (Montreal), and verified afterwards by theoretical means.  相似文献   

12.
The black-and-white travelling salesman problem (BWTSP) is an extension to the well-known TSP by partitioning the set of vertices into black and white vertices, and imposing cardinality and length constraints between two consecutive black vertices in a Hamiltonian tour. BWTSP has various applications in aircraft routing, telecommunication network design and logistics. In this paper, we develop several tabu search (TS) heuristics for solving the BWTSP. Our TS is built upon a new efficient neighbourhood structure, which exploits both the permutation and knapsack features of BWTSP. We also embed our TS as a heuristic procedure to improve the upper bound in a mixed-integer linear programming method. Extensive computational experiment on both benchmark and randomly generated instances shows effectiveness and efficiency of our algorithms. Our algorithms are able to obtain optimal and near optimal solutions to small instances in seconds, and find feasible solutions to large instances that have not been solved by the existing methods in the literature.  相似文献   

13.
The berth allocation problem is to allocate space along the quayside to incoming ships at a container terminal in order to minimize some objective function. We consider minimization of total costs for waiting and handling as well as earliness or tardiness of completion, for all ships. We assume ships can arrive at any given time, i.e., before or after the berths become available. The resulting problem, which subsumes several previous ones, is expressed as a linear mixed 0–1 program. As it turns out to be too time-consuming for exact solution of instances of realistic size, a Variable Neighborhood Search (VNS) heuristic is proposed, and compared with Multi-Start (MS), a Genetic Search algorithm (GA) and a Memetic Search algorithm (MA). VNS provides optimal solutions for all instances solved to optimality in a previous paper of the first two authors and outperforms MS, MA and GA on large instances.  相似文献   

14.
The yard allocation problem (YAP) is a real-life resource allocation problem faced by the Port of Singapore Authority (PSA). As the problem is NP-hard, we propose an effective meta-heuristic procedure, named critical-shaking neighborhood search. Extensive experiments have shown that the new method can produce higher quality solutions in a much shorter time, as compared with other meta-heuristics in the literature. Further to this, it has also improved or at least achieved the current best solutions to all the benchmark instances of the problem.  相似文献   

15.
Euclidean Minimum Sum-of-Squares Clustering amounts to finding p prototypes by minimizing the sum of the squared Euclidean distances from a set of points to their closest prototype. In recent years related clustering problems have been extensively analyzed under the assumption that the space is a network, and not any more the Euclidean space. This allows one to properly address community detection problems, of significant relevance in diverse phenomena in biological, technological and social systems. However, the problem of minimizing the sum of squared distances on networks have not yet been addressed. Two versions of the problem are possible: either the p prototypes are sought among the set of nodes of the network, or also points along edges are taken into account as possible prototypes. While the first problem is transformed into a classical discrete p-median problem, the latter is new in the literature, and solved in this paper with the Variable Neighborhood Search heuristic. The solutions of the two problems are compared in a series of test examples.  相似文献   

16.
Variable neighborhood search: Principles and applications   总被引:5,自引:0,他引:5  
Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several extensions are proposed for solving large problem instances: using VNS within the successive approximation method yields a two-level VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear to have been applied before.  相似文献   

17.
Given a set of customer orders and a routing policy, the goal of the order-batching problem?(OBP) is to group customer orders to picking orders (batches) such that the total length of all tours through a rectangular warehouse is minimized. Because order picking is considered the most labor-intensive process in warehousing, effectively batching customer orders can result in considerable savings. The OBP is NP-hard if the number of orders per batch is greater than two, and the exact solution methods proposed in the literature are not able to consistently solve larger instances. To address larger instances, we develop a metaheuristic hybrid based on adaptive large neighborhood search and tabu search, called ALNS/TS. In numerical studies, we conduct an extensive comparison of ALNS/TS to all previously published OBP methods that have used standard benchmark sets to investigate their performance. ALNS/TS outperforms all comparison methods with respect to both average solution quality and run-time. Compared to the state-of-the-art, ALNS/TS shows the clearest advantages on the larger instances of the existing benchmark sets, which assume a higher number of customer orders and higher capacities of the picking device. Finally, ALNS/TS is able to solve newly generated large-scale instances with up to 600 customer orders and six articles per customer order with reasonable run-times and convincing scaling behavior and robustness.  相似文献   

18.
This paper considers a variant of the travelling salesman problem named the capacitated prize-collecting travelling salesman problem (CPCTSP), which is derived from the colour-coating production scheduling in a cold rolling mill. The objective of the CPCTSP is to minimize the travel cost and the penalties paid for unvisited customers in such a way that a sufficiently large prize is collected and the demand of the visited customers does not exceed the salesman's capacity. For this problem, we propose an iterated local search (ILS) heuristic adopting guided kick and enhanced dynasearch. The experimental results on randomly generated instances show that the proposed heuristic outperforms the improved tabu search algorithm using frequency-based memory, and the further experimental results on instances collected from real colour-coating production also show that the proposed ILS algorithm is more effective and efficient than the currently adopted manual scheduling method.  相似文献   

19.
The Probabilistic Traveling Salesman Problem is a variation of the classic traveling salesman problem and one of the most significant stochastic routing problems. In probabilistic traveling salesman problem only a subset of potential customers need to be visited on any given instance of the problem. The number of customers to be visited each time is a random variable. In this paper, a variant of the well-known Greedy Randomized Adaptive Search Procedure (GRASP), the Expanding Neighborhood Search–GRASP, is proposed for the solution of the probabilistic traveling salesman problem. expanding neighborhood search–GRASP has been proved to be a very efficient algorithm for the solution of the traveling salesman problem. The proposed algorithm is tested on a numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the classic GRASP algorithm and with a Tabu Search algorithm are also presented. Also, a comparison is performed with the results of a number of implementations of the Ant Colony Optimization algorithm from the literature and in six out of ten cases the proposed algorithm gives a new best solution.  相似文献   

20.
This paper presents a modified Variable Neighborhood Search (VNS) heuristic algorithm for solving the Discrete Ordered Median Problem (DOMP). This heuristic is based on new neighborhoods’ structures that allow an efficient encoding of the solutions of the DOMP avoiding sorting in the evaluation of the objective function at each considered solution. The algorithm is based on a data structure, computed in preprocessing, that organizes the minimal necessary information to update and evaluate solutions in linear time without sorting. In order to investigate the performance, the new algorithm is compared with other heuristic algorithms previously available in the literature for solving DOMP. We report on some computational experiments based on the well-known N-median instances of the ORLIB with up to 900 nodes. The obtained results are comparable or superior to existing algorithms in the literature, both in running times and number of best solutions found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号