首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ag+ (aq) + Cs+(org) ? Ag+ (org) + Cs+ (aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as logK ex (Ag+, Cs+) = ?1.5 ± 0.1. Further, the stability constant of the Ag+ complex in FS 13 saturated with water was calculated for a temperature of 25 °C: log β org(Ag+) = 10.1 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species Ag+ was derived. In the resulting Ag+ complex, the “central” cation Ag+ is bound by eight bond interactions to six oxygen atoms from the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent ligand 1 via cation-π interaction.  相似文献   

2.
From extraction experiments and $ \gamma $ -activity measurements, the extraction constants corresponding to the general equilibrium Eu3+(aq) + 3 A?(aq) + L(nb) $ \Leftrightarrow $ EuL3+(nb) + 3A?(nb) taking place in the two-phase water–nitrobenzene system ( $ {\text{A}}^{ - } = {\text{CF}}_{ 3} {\text{SO}}_{3}^{ - } $ ; L = electroneutral receptors denoted by 1, 2, and 3 – see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the EuL3+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the series of 3 < 2 < 1.
Scheme 1
Structural formulas of N,N,N′,N′,N″,N″-hexacyclohexyl-4,4′,4″-propylidynetris(3-oxabutyramide) (1), bis[(12-crown-4)methyl] dodecylmethylmalonate (2), and bis[(benzo-15-crown-5)-4′-ylmethyl] pimelate (3)  相似文献   

3.
A series of 1,2,3-triazole-linked calix[4]arene ionophores comprised of different O-donor groups (OH, COOEt, CONEt2) attached either to the lower rim of calix or to the triazole moieties were synthesized to explore their ion-selectivity for the first time in potentiometric transduction. Plasticized PVC membrane electrodes (ISEs) were fabricated, and their potentiometric selectivities were measured toward a series of mono- and divalent metal ions. Structure-ion-selectivity relationship and the structural requirements of the coordination sphere for selective binding were established. ISEs made of calix[4]arene-bis-triazoles were found generally to exhibit distinct Ag+ selectivity in the order 3 ≈ 4 > 2 > 1, indicating the beneficial effect of the carboxamide or ester groups in the complexing site. In contrast, calix[4]arene-tetratriazole 5 comprised only sp 2 N-donor atoms displayed excellent Cu2+ selectivity over a series of alkali-, alkaline earth- and transition metal ions. A unique feature of the outstanding Ag+ selective electrodes made of 3 and 4 was recognized and suggested their potential application as Na+ ISEs in systems not containing silver ions. Further, the potential use of competitive ESI-MS experiments for screening the binding affinities of ionophores 36 to different metal ions was also demonstrated.  相似文献   

4.
A series of BaDyxFe12?xO19 ferrite microfibres have been synthesized from metal nitrates and citric acid by the sol–gel method. TG-DSC, XRD, FTIR, FESEM, TEM and VSM were employed to characterize the thermal decomposition process, crystallite sizes, structure and magnetic properties of ferrite microfibres. The effect of calcined temperature, holding time, ion substitution on structure, magnetic properties of barium ferrite microfibres was investigated. The nanoparticle growth mechanism of ferrite microfibres was discussed. The results indicated that the hexaferrite phase was formed at 750 °C and Dy3+ ions entered the magnetoplumbite lattice. However, the reflections shift to a lower angle and the characteristic peaks of ferrite microfibres in FTIR shift to the lower wavenumber with the Dy content increasing. The VSM results shown that saturation magnetization (M s ) gradually increased with calcined temperature increasing and holding time prolonging, while coercive force (H c ) revealed an increase at first and then decreases. With the Dy content increasing, the M s achieved values of M s  = 50 emu?g?1 (297 K) and 70 emu?g?1 (77 K) and the H c value shown a continuous reduction from 515 kA??m?1 (297 K) and 435 kA?m?1 (77 K) (x = 0.0) to 242 and 215 kA?m?1 (x = 0.4).  相似文献   

5.
The use of electrospun nanofibers as functional material in paper-based lateral flow assays (LFAs) was studied. Specific chemical features of the nanofibers were achieved by doping the base polymer, poly(lactic acid) (PLA), with poly(ethylene glycol) (PEG) and polystyrene8K-block-poly(ethylene-ran-butylene)25K-block-polyisoprene10K-Brij76 (K3-Brij76) (KB). The LFAs were assembled such that the sample flowed through the nanofiber mat via capillary action. Initial investigations focused on the sustainable spinning and assembly of different polymer structures to allow the LFA format. Here, it was found that the base polymer poly(vinyl alcohol) (PVA), which was shown to function well in microfluidic biosensors, did not work in the LFA format. In contrast, PLA-based nanofibers enabled easy assembly. Three relevant features were chosen to study nanofiber-based functionalities in the LFA format: adsorption of antibodies, quantification of results, and nonspecific binding. In particular, streptavidin-conjugated sulforhodamine B (SRB)-encapsulating liposomes were captured by anti-streptavidin antibodies adsorbed on the nanofibers. Varying the functional polymer concentration within the PLA base enabled the creation of distinct capture zones. Also, a sandwich assay for the detection of Escherichia coli O157:H7 was developed using anti-E. coli antibodies as capture and reporter species with horseradish peroxidase for signal generation. A dose–response curve for E. coli with a detection limit of 1.9?×?104 cells was achieved. Finally, functional polymers were used to demonstrate that nonspecific binding could be eliminated using antifouling block copolymers. The enhancement of paper-based devices using functionalized nanofibers provides the opportunity to develop a broad spectrum of sensitive and specific bioassays with significant advantages over their traditional counterparts.
Figure
Schematic of LFA format and single-step binding assay. A 1.75?×?5-mm nanofiber mat was placed directly on a backing card 4.5 mm in width, and a 1?×?20-cm absorbent pad was placed on the backing card overlapping the nanofiber mat by approximately 2 mm (a). The LFAs ran vertically in glass culture tubes. In the E. coli sandwich assay, E. coli (green) flowed through the anti-E. coli-modified nanofiber mat, followed by horseradish peroxidase (HRP)-conjugated (pink) anti-E. coli. When E. coli is present, a colorimetric signal results upon addition of HRP substrate (b), and when no E. coli is present, the HRP flows through the nanofiber mat and no signal is observed (c)  相似文献   

6.
Both the singlet and triplet potential energy surfaces (PESs) of the NH (X3Σ?) + HCNO reaction have been investigated at the BMC-CCSD level based on the UB3LYP/6-311++G(d, p) structures. The results show that the title reaction is more favorable through the singlet potential energy surface than the triplet one. For the singlet potential energy surface of the NH (X3Σ?) + HCNO reaction, the most feasible association of NH (X3Σ?) with HCNO is found to be a non-barrier nitrogen-to-carbon attack forming the adduct a (trans-HNCHNO), which can isomerize to the adduct b (cis-HNCHNO). The most feasible channel is that the 1, 3-H shift with N2–H2 and C–N1 bonds cleavage associated with the N1–H2 bond formation of adduct a leads to the product P 1 (HCN + HNO). Moreover, P 2 (HNC + HNO) should be the competitive product. The other products, including P 3 (NH2 + NCO) and P 4 (N2H2 + CO), are minor products. The product P 1 can be obtained through two competitive channels Path 1: R  a  P 1 and Path 3: R  b  d  P 1 , whereas the product P 2 can be formed through Path 2: R  b  d  P 2 . At high temperatures, the nitrogen-to-nitrogen approach may become feasible. For the triplet potential energy surface of the NH (X3Σ?) + HCNO reaction, the Path 10: R  3 a  3 a 1  P 1 should be the most feasible pathway due to the less reaction steps and lower barriers. These conclusions will have impacts on further experimental investigations.  相似文献   

7.
A number of p-tert-butylcalix[4]arene thioamides were synthesized and characterized by 1H-NMR and elemental analysis. Compounds 15 are O-substituted derivatives with –CH2–C(=S)–N–X groups, where NX = morpholidyl, NEt2, NHC2H4Ph, NHCH2Ph and NHEt, respectively. The X-ray structures of the ligands 1, 3, 5 and of the complex 3·Pb(ClO4)2, (compound 6), are presented and their slightly distorted cone conformation is established. The influence of the nature of the thioamide functions (secondary or tertiary) on the extractability of some selected metal cations was investigated. Whereas all these calixarenes show the highest extraction level for Ag+, tertiary thioamides are more efficient extractants for Pb2+ than secondary thioamides.  相似文献   

8.
The Schiff base bis(4-ethylbenzyl) p-phenylenediimine, 4-eb-p-phen (1), and six new dimeric Pd(II) complexes of the type [Pd(μ-X)(4-eb-p-phen)]2 {X = Cl (2), Br (3), I (4), N3 (5), NCO (6), SCN (7)} have been synthesized and characterized by elemental analysis, IR spectroscopy, and 1H and 13C{1H}-NMR experiments. The thermal behavior of the complexes 27 has been investigated by means of thermogravimetry and differential thermal analysis. From the final decomposition temperatures, the thermal stability of the complexes can be ordered in the following sequence: 3 > 4 > 7 > 2 ≈ 5 > 6. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction (XRD).  相似文献   

9.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) $ \Leftrightarrow $ M2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\hbox{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; 1 = macrocyclic lactam receptor–see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the M2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: Mg2+ < Co2+ < Cu2+, Mn2+, Ni2+ < Cd2+ < Ca2+ < Ba2+, Zn2+ < Pb2+ <  $ {\hbox{UO}}_{2}^{2 + } $ .
Scheme 1
Structural formula of 2,18-dichloro-9,10,11,12-tetrahydro-6H, 20H-dibenzo[l,o][1,11,4,8]dioxadiazacyclohexadecine-7,13(8H, 14H)-dione (abbrev. 1)  相似文献   

10.
Two βCD dimers (linked by succinic acid, 2, or ethylenediaminetetraacetic acid, EDTA, 3, bridges) and a negatively charged monomer derivative of βCD, 1, have been synthesized and their ability to solubilize cholesterol in aqueous solution was studied. The three compounds exhibit a great capacity in solubilizing cholesterol as, for instance, concentrations up to 6 mM of cholesterol were measured in the presence of 25 mM of 3. The phase-solubility diagrams of the two dimers exhibit A L type profiles while the monomer 1 follows an A P isotherm. The cholesterol/dimer complexes have 1:1 stoicheiometries while monomer 1 forms two complexes with molar ratios of 1:1 and 1:2 (cholesterol/1). The equilibrium constants are K 1:1 = (5.9 ± 0.3) × 104 M?1 and K 1:1 = (8.8 ± 0.2) × 104 M?1 for 2 and 3, respectively, and K 1:1 = 73 ± 19 M?1 and K 1:2 = 204 ± 65 M?1 for 1. The comparison of K 1:1(3) with the product K 1:1 × K 1:2 (1) reveals that a chelate effect in binding the cholesterol by 3 exists. The structure of the cholesterol/3 complex was studied by ROESY experiments and by molecular dynamics simulations.  相似文献   

11.
Three novel thiaazacrown ethers 1, 2 and 3 were synthesized in a simple way and in high yield. The complex formation between Ag+, Cu2+, Zn2+, Pb2+, Hg2+ and Cd2+ metal cations with thiaazacrown ethers 1, 2 and 3 have been studied in acetonitrile:chloroform (1:1) binary solvent system using conductometric technique. The conductance data show that the stochiometry of the complexes with Ag+, Cu2+ and Zn2+ cations is 1:1 (L:M), but in the case of Pb2+ and Hg2+ cations, a 1:2 (L:M) complex is formed in solutions. The formation constants of the resulting 1:1 complexes were determined from the molar conductance-mole ratio data at 25 °C. It was found that the stability constants of 1-Ag2+, 2-Ag+ and 3-Ag+ complexes are higher than those of their corresponding Zn2+ and Cu2+ complexes and found to vary in order 2 for Ag+.  相似文献   

12.
The thermal decomposition of [RuCl26-p-cymene)]2 (1) and its biologically active N-alkylphenothiazine compounds of composition L[RuCl36-p-cymene)] where L = CPH+ (2), TFH+·HCl (3), and TRH+ (4) (chlorpromazine hydrochloride, CP·HCl; trifluoperazine dihydrochloride, TF·2HCl; and thioridazine hydrochloride, TR·HCl, respectively) has been studied. The crystal and molecular structure of compound 3 was determined earlier by single crystal X-ray diffraction analysis. The thermal data were collected by simultaneous TG/DSC measurements. For evolved gas detection, the qualitative reaction of chlorides with AgNO3 in an acidic solution was applied. The measurements were carried out in the temperature range to 700 °C in nitrogen atmosphere. Compounds of L[RuCl36-p-cymene)] crystallize with water or water/2-propanole. On the basis of thermal data, the trend in the solvent bonding energies was assessed.  相似文献   

13.
Reactions of a solution of AgNO3 in aqueous methanol with solutions of 1,4-diallylpiperazine (acidified with HNO3 to pH = 4) and 1-allyloxybenzotriazole in ethanol gave the crystalline silver(I) π-complexes [Ag2(C4H8N2(C3H5)2(H+)2)(H2O)2(NO3)2](NO3)2 (I) and [Ag(C6H4N3(OC3H5)(NO3))] (II). Their crystal structures were determined by X-ray diffraction. Crystals of complexes I and II are monoclinic, space group P21/c; for I: a = 7.053(3)Å, b = 9.389(3)Å, c = 15.488(4)Å, β = 91.60°, V = 1025.3(6)Å3, Z = 4; for II: a = 10.650(4)Å, b = 15.062(5)Å, c = 7.412(4)Å, β = 104.20(3)°, V = 1152.6(8)Å3, Z = 4. In both structures, the organic components act as bidentate ligands forming with AgNO3 34- and 14-membered topological rings, respectively. In complex I, the nearly tetrahedral environment of the Ag(I) atom is made up of the olefinic C=C bond, the O atoms of the nitrate anions, and the water molecule. 1-Allyloxybenzotriazole in structure II causes the deformation of the coordination polyhedron of Ag into a trigonal pyramid via inclusion of the ligand N atom in its coordination sphere. The topological units of the complexes form infinite polymer layers linked by anionic NO 3 ? bridges. In structure I, these layers are united through a system of hydrogen bonds into a three-dimensional framework.  相似文献   

14.
(E)-11H-Bisbenzo[a]fluorenylidene (E-6) was synthesized by Barton’s double extrusion diazo-thione coupling method from 11H-benzo[a]fluoren-11-thione (11) and 11-diazo-11H-benzo[a]fluorene (13). The reaction is probably thermodynamically controlled; in the event that the less stable Z -6 is also formed, it would rapidly undergo Z → E diastereomerization to give E -6. The B3LYP/6-311G(d,p) calculated diastereomerization barrier for Z -6 → E -6 is ΔG 298 = 57.0 kJ/mol (13.6 kcal/mol). The calculated equilibrium constant K eq(E -6 → Z -6) = 92:8 (at 298 K) is indicative of a marked diastereoselectivity of the reaction leading to E -6. The structure of E-6 was established by 1H-NMR and 13C-NMR spectroscopies and by X-ray analysis. PAE E-6 crystallizes in the monoclinic space group C2/c. The unit cell of the crystal structure E -6 contains eight molecules, arranged as four pairs of enantiomers. PAE E -6 adopts a twisted conformation with the pure twist of the central C11=C11′ bond ω = 39°. The dihedral angle ν in E -6 is 60.6°, which is significantly higher than the respective dihedral angle in PAEs Z -6, 2, E -7, Z -7, 14, and 15. The large syn-pyramidalization angles at C11 and C11′ (χ = 12.6° and 14.8°) of E-6 indicates the enhanced strain in the fjord regions of the molecule. The enhanced twist is primarily attributed to the double benzo[a]annelation of the bifluorenylidene moiety at the fjord regions. The B3LYP/6-311G(d,p) calculated structure of E -6 is in a very good agreement with the experimental X-ray structure. PAE E -6 adopts a twisted conformation in solution, with the downfield chemical shift of H1/H1′ (8.31 ppm); H10/H10′ (δ = 7.20 ppm) and H9/H9′ (δ = 6.86 ppm) in E -6 are positioned above the planes of the opposing naphthalene rings. PAEs E -6 and Z -6 are significantly higher in energy than their corresponding benzo[b]annelated isomers E -7 and Z -7.  相似文献   

15.
Two new pendant armed Schiff base macrocyclic complexes, [MgL1](ClO4)2 (1), and [MgL2](ClO4)2 (2), have been prepared via cyclocondensation of 2,6-diformylpyridine and 2,6-diacetylpyridine with two hexadentate hexaamines, ten and tmen, in the presence of Mg(II) ion. The ligands are 15-membered pentaaza macrocycles having two 2-aminoethyl pendant arms. The newly prepared complexes are investigated by IR, 1H NMR, 13C{1H} NMR, DEPT(135), COSY(H, H) and HMQC spectroscopic methods. The antimicrobial screening of newly prepared complexes, 1 and 2, as well as previously prepared similar complexes, [MgL3](ClO4)2 (3) and [MgL4](ClO4)2 (4), against Escherichia coli, Staphylococcus aureus and candidia albicans showed that the macrocyclic complexes of Mg(II) containing 15-membered pentaaza ring (1, 2 and 3) have no activity. Where as the compound 4, which contain 16-membered pentaaza ring, had remarkable inhibition zone on the culture of S. aureus and E. coli as compared with standard drugs. The 1H and 13C chemical shieldings of gas phase complexes were also studied by the gauge independent atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) methods at the level of density functional theory (DFT). The computed 13C chemical shifts are in reasonably good agreement with the experimental data.  相似文献   

16.
It is suggested that the hollow coinage–metal icosahedral cage of the [Ag44(SR)30]4? tetraanion (1a) may be occupied by two hydrogen atoms, giving rise to a dihydridic cluster [H2Ag44(SR)30]4? tetraanion (2b). As a consequence, two series of clusters, with different electron counts, can be formed by chemical means: the 18-electron series [H x Ag44(SR)30](4?x)? via stepwise protonation of 1a and the 20-electron series [H x Ag44(SR)30](6?x)? via stepwise deprotonation of 2b (here x = 0, 1, 2). Both series are closed-shell Jelliumatic clusters and expected to be stable. The corresponding members of these two series (for a given x value) are related by a two-electron reduction. These pairs raise the possibility of the hollow icosahedral metal cages in housing a number of hydrogen atoms, either via stepwise protonations or by absorption of hydrogen molecules.  相似文献   

17.
Two new cobalt(III) complexes of the hexadentate ligand [1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane] (H2bpctb) with N4S2 donor set atoms have been synthesized. A reaction of Co(CH3COO)2·4H2O with (H2bpctb) leads to the formation of [CoIII(bpctb)]PF6 (1) having a CoN2(pyridine)N′2(amide)S2(thioether) coordination by symmetric bpctb2? ligand. A similar reaction under slightly different conditions, however, gives [CoIII(L a )(L b )] (2), resulting from a C–S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyridine)N′2(amide)S(thioether)S′(thiolate) coordination. These two Co(III) complexes have been characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structures of [CoIII(bpctb)]PF6 (1) in the form of the solvate (1·MeOH·H2O) and of [CoIII(L a )(L b )] (2) have been determined by X-ray crystallography. The Co atoms of both complexes exhibit distorted octahedral geometry. The electrochemical investigation of [Co(bpctb)]PF6·MeOH·H2O (1·MeOH·H2O) and [CoIII(L a )(L b )] (2) by cyclic voltammetry reveals a reversible CoIII–CoII redox process at E 1/2 = ?0.32 V (ΔE p = 80 mV); for 1, and E 1/2 = ?0. 87 V (ΔE p = 70 mV) for 2.  相似文献   

18.
A method was developed to sensitively determine safranine T in wolfberry by molecularly imprinted solid-phase extraction (MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC-LIF). The MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using safranine T, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions and the morphologies of inner polymers were characterized by scanning electron microscopy (SEM). The mean recoveries of safranine T in wolfberry ranged from 91.2 % to 92.9 % and the intraday and interday relative standard deviation (RSD) values all ranged from 3.4 % to 4.2 %. Good linearity was obtained over 0.001–1.0 μg mL–1 (r?=?0.9999) with a detection limit (S/N?=?3) of 0.4 ng g–1. Under the selected conditions, enrichment factors of over 90-fold were obtained and the extraction on the monolithic column effectively cleaned up the wolfberry matrix. The results demonstrated that the proposed MISPE-HPLC-LIF method could be applied to sensitively determine safranine T in wolfberry.
Figure
SEM images of the monolithic column prepared with different initiation reaction methods: a UV initiation; b water bath; c 5000-folds magnification of b; d 20000-folds magnification of b  相似文献   

19.
Four new mononuclear triazido-cobalt(III) complexes [Co(L 1/2/4 )(N3)3] and [Co(L 3 )(N3)3]·CH3CN where L 1  = [(2-pyridyl)-2-ethyl]-(2-pyridylmethyl)-N-methylamine, L 2  = [(2-pyridyl)-2-ethyl]-[6-methyl-(2-pyridylmethyl)]-N-methylamine, L 3  = [(2-pyridyl)-2-ethyl]-[3,5-dimethyl-4-methoxy-(2-pyridylmethyl)]-N-methylamine, and L 4  = [(2-pyridyl)-2-ethyl]-[3,4-dimethoxy-(2-pyridylmethyl)]-N-methylamine, respectively, were synthesized and structurally characterized. The four complexes were characterized by elemental microanalyses, IR and UV–VIS spectroscopy and X-ray single crystal crystallography. The complexes display two strong IR bands over the frequency region 2,020–2,050 cm?1 assigned for the asymmetric stretching frequency, νa(N3) of the coordinated azides indicating facial geometry. The molecular structure determinations of the complexes were in complete agreement with fac-[Co(L)(N3)3] conformation in distorted octahedral Co(III) environment.  相似文献   

20.
Infrared microspectroscopy is an emerging approach for disease analysis owing to its capability for in situ chemical characterization of pathological processes. Synchrotron-based infrared microspectroscopy (SR-IMS) provides ultra-high spatial resolution for profiling biochemical events associated with disease progression. Spectral alterations were observed in cultured oral cells derived from healthy, precancerous, primary, and metastatic cancers. An innovative wax-physisorption-based kinetic FTIR imaging method for the detection of oral precancer and cancer was demonstrated successfully. The approach is based on determining the residual amount of paraffin wax (C25H52) or beeswax (C46H92O2) on a sample surface after xylene washing. This amount is used as a signpost of the degree of physisorption that altered during malignant transformation. The results of linear discriminant analysis (LDA) of oral cell lines indicated that the methylene (CH2) and methyl group (CH3) stretching vibrations in the range of 3,000–2,800 cm?1 have the highest accuracy rate (89.6 %) to discriminate the healthy keratinocytes (NHOK) from cancer cells. The results of wax-physisorption-based FTIR imaging showed a stronger physisorption with beeswax in oral precancerous and cancer cells as compared with that of NHOK, which showed a strong capability with paraffin wax. The infrared kinetic study of oral cavity tissue showed a consistency in the wax physisorption of the cell lines. On the basis of our findings, these results show the potential use of wax-physisorption-based kinetic FTIR imaging for the early screening of oral cancer lesions and the chemical changes during oral carcinogenesis.
Figure
Synchrotron-based infrared microspectroscopy (SR-IMS) provides ultra-high spatial resolution for profiling biochemical events associated with disease progression. FTIR spectra collected by SR-IMS were classified by linear discriminant analysis (LDA). The results of LDA of oral cell lines indicate the optical absorption in the range of 3,000–2,800 cm?1 have the highest accuracy to discriminate normal healthy oral keratinocytes (NHOK) from cancer cells. Two types of organic waxes with different polarity were used as adsorbents for cancer screening. The results of wax-physisorption-based FTIR imaging showed a stronger physisorption of beeswax in tumor tissues as compared with that of normal oral mucosa, which showed a stronger capability of physisorption to paraffin wax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号