首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.  相似文献   

2.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

3.
Attempts to prepare heterobimetallic complexes in which 3d and uranium magnetic ions are associated by means of the Schiff bases H(2)L(i) derived from 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehyde were unsuccessful because of ligand transfer reactions between [ML(i)] (M=Co, Ni, Cu) and UCl(4) that led to the mononuclear Schiff base complexes of uranium [UL(i)Cl(2)]. The crystal structure of [UL(3)Cl(2)(py)(2)] [L(3)=N,N'-bis(3-methoxysalicylidene)-ethylenediamine; py=pyridine] was determined. The hexadentate Schiff base ligand N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine (L) was useful for the synthesis of novel trinuclear complexes of the general formula [[ML(py)](2)U] (M=Co, Ni, Zn) or [[CuL(py)]M'[CuL]] (M'=U, Th, Zr) by reaction of [M(H(2)L)] with [M'(acac)(4)] (acac=MeCOCHCOMe). The crystal structures of the Co(2)U, Ni(2)U, Zn(2)U, Cu(2)U, and Cu(2)Th complexes show that the two ML fragments are orthogonal, being linked to the central actinide ion by the two pairs of oxygen atoms of the Schiff base ligand. In each compound, the UO(8) core exhibits the same dodecahedral geometry, and the three metals are linear. The magnetic study indicated that the two Cu(2+) ions are not coupled in the Cu(2)Zr and Cu(2)Th compounds. The magnetic behavior of the Co(2)U, Ni(2)U, and Cu(2)U complexes was compared with that of the Zn(2)U derivative, in which the paramagnetic 3d ion was replaced with the diamagnetic Zn(2+) ion. A weak antiferromagnetic coupling was observed between the Ni(2+) and the U(4+) ions, while a ferromagnetic interaction was revealed between the Cu(2+) and U(4+) ions.  相似文献   

4.
5.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

6.
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.  相似文献   

7.
Adducts of Ni(II)-square planar complexes [Ni(beta-dik)(Me(4)en)](+), with a series of bidentate ligands (L), where beta-dik=acetylacetonate (acac) and benzoylacetonate (bzac), Me(4)en=N,N,N',N'-tetramethylethylenediamine and L=Me(4)en, 2,2'-bipyridine (bipy), ethylenediamine (en) and oxalate (C(2)O(4)(2-)) have been synthesized and characterized by spectral, thermal and magnetic measurements. Formation constants of the adducts formed from a series of ternary mixed Ni(II) complexes with the general formula [Ni(beta-dik)(diam)](+) with 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy) and pyridine were spectrophotometrically determined. Thermodynamic parameters of the adduct formation between nickel(II) square-planar chelates and pyridine (py), 2,2'-bipyridine (bipy) and acetylacetone (acac) were also spectrophotometrically determined in 1,2-dichloroethane. The thermal stability of the isolated adducts was studied using thermogravimetry and the decomposition schemes of the adducts were given.  相似文献   

8.
The gas‐phase ligand‐exchange reactions between Cu(II) and Ni(II) complexes containing the acetylacetonate (acac), hexafluoroacetylacetonate (hfac), and trifluorotrimethylacetylacetonate (tftm) ligands were investigated using a triple quadrupole mass spectrometer. The gas‐phase mixed‐ligand products of [Cu(acac)(tftm)]+, [Ni(acac)(tftm)]+, [Cu(hfac)(tftm)]+, and [Ni(hfac)(tftm)]+ were formed following the co‐sublimation of either homo‐metal or hetero‐metal precursors. The gas‐phase formation of [Cu(acac)(tftm)]+, [Cu(hfac)(tftm)]+, [Ni(acac)(tftm)]+, and [Ni(hfac)(tftm)]+ complexes is reported herein for the first time. The corresponding fragmentation patterns of these species along with those of Cu(tftm)2 and Ni(tftm)2 are also presented. Mass‐selected ion‐neutral reactions were investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Several new cobalt(III) complexes containing (3-aminopropyl)dimethylphosphine (pdmp) have been prepared, and their molecular structures have been determined. A dichloro complex of trans(Cl,Cl)-cis(P,P)-[CoCl(2)(pdmp)(2)]PF(6) (1) was prepared from trans-[CoCl(2)(py)(4)]Cl.6H(2)O and pdmp. X-Ray crystallography confirmed the (C(2))-chair(2) conformation of two six-membered pdmp chelate rings in 1, while the analogous 1,3-bis(dimethylphosphino)propane (dmpp) complex trans-[CoCl(2)(dmpp)(2)]ClO(4) (3) exhibited the (D(2d))-twist(2) conformation. Substitution reactions of 1 for ethane-1,2-diamine (en), pentane-2,4-dionate (acac), and N,N-dimethyldithiocarbamate (dtc) gave the mixed-ligand tris(chelate)-type complexes of [Co(en)(2)(pdmp)]Cl(2)(PF(6)) (5), [Co(acac)(pdmp)(2)](PF(6))(2) (7), and [Co(dtc)(3-n)(pdmp)(n)](PF(6))(n) [n = 1 (9) or 2 (10)], respectively. The conformer of the complex cation in 5 was assigned as lel.ob.chair by X-ray analysis. In the case of the acac complex 7, both trans(P,N) (7a) and trans(N,N) (7b) isomers were isolated, and the complex cations were characterized as syn-chair(2) and anti-chair(2) conformers, respectively, with respect to the six-membered pdmp chelate rings. These conformers coincide with the most stable ones anticipated by the DFT optimum geometry calculations. In the crystal structure of trans(P,N)-[Co(dtc)(pdmp)(2)](BPh(4))(2) (10') one of the pdmp chelate rings adopted a skew-boat (twist) conformation, which reduced the intramolecular steric ring-ring interaction effectively. The DFT optimized geometries for several isomers and/or conformers of [CoCl(2)(pdmp)(2)](+) were compared.  相似文献   

10.
Microsolvation of the [Ni(acac)(tmen)]+ complex by a series of aliphatic n-alcohols (Solv) has been studied in ClCH2CH2Cl solutions by spectrophotometry. Based on the changes in the electronic spectrum of the afore-mentioned complex, observed under the influence of any alcohol, the equilibrium constants for the formation of the [Ni(acac)(tmen)Solv]+ and [Ni(acac)(tmen)Solv2]+ species have been computed according to the algorithm presented in this work. It was found that, in all the systems studied, the stability of five-coordinated [Ni(acac)(tmen)Solv]+ is higher than that of octahedral [Ni(acac)(tmen)Solv2]+. The resulting values are discussed in terms of the Lewis basicity of alcohols.  相似文献   

11.
Nickel(II) complexes of bidentate N-heterocyclic carbene (NHC)/phosphane ligand L were prepared and structurally characterized. Unlike palladium, which forms [PdCl(2)(L)], the stable nickel product isolated is the ionic [Ni(L)(2)]Cl(2). These Ni(II) complexes are highly robust in air. Among different N-substituents on the ligand framework, the nickel complex of ligand L bearing N-1-naphthylmethyl groups (2 a) is a highly effective catalyst for Suzuki cross-coupling between phenylboronic acid and a range of aryl halides, including unreactive aryl chlorides. The activities of 2 a are largely superior to those of other reported nickel NHC complexes and their palladium counterparts. Unlike the previously reported [NiCl(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane), 2 a can effectively catalyze the cross-coupling reaction without the need for a catalytic amount of PPh(3), and this suggests that the PPh(2) functionality of hybrid NHC ligand L can partially take on the role of free PPh(3). However, for unreactive aryl chlorides at low catalyst loading, the presence of PPh(3) accelerates the reaction.  相似文献   

12.
Gas‐phase ligand exchange reactions between M(acac)2 and M(hfac)2 species, where M is Cu(II) and/or Ni(II), were observed to occur in a double‐focusing reverse‐geometry magnetic sector mass spectrometer. The gas‐phase mixed ligand product, [M(acac)(hfac)]+, was formed following the co‐sublimation of either homo‐metal or hetero‐metal precursors. The gas‐phase formation of [Cu(acac)(hfac)]+ from hetero‐metal precursors is reported herein for the first time. The [Ni(acac)(hfac)]+ complex is also observed for the first time to form following the co‐sublimation of not only Ni precursors, but also from separate Ni and Cu precursors. The corresponding fragmentation patterns of these species are also presented, and the mixed metal mixed ligand product [NiCu(acac)2(hfac)]+ is observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Two new series of each of four Cr(III) and Ni(II) imino nitroxide complexes with various kinds of beta-diketonates, [Cr(beta-diketonato)(2)(IM2py)]PF(6), and [Ni(beta-diketonato)(2)(IM2py)] (IM2py = 2-(2'-(pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy)) have been synthesized, and their structures and magnetic and optical properties have been examined. The X-ray analysis demonstrated that a IM2py ligand coordinated to Cr(III) and Ni(II) acts as a five-membered bidentate chelate. The variable-temperature magnetic susceptibility measurements indicated the antiferromagnetic and ferromagnetic interaction of Cr(III) and Ni(II) with IM2py, respectively, giving a variety of the magnetic coupling constant J values with varying the beta-diketonato ligands. The UV-vis shoulders around (19-20) x 10(3) and (17-18) x 10(3) cm(-)(1) for the Cr(III) and Ni(II) complexes, respectively, characteristic of the IM2py complexes were assigned to the metal-ligand charge-transfer transitions, Cr(t(2g))-SOMO(pi*) and Ni(e(g))-SOMO(pi*) MLCT in terms of the resonance Raman spectra and the variable-temperature absorption spectra. The absorption components centered around (13-14) x 10(3) cm(-1) for the Cr(III) and Ni(II) complexes were due to the formally spin-forbidden d-d transition within the t(2g) and e(g) subshells, associated with the intensity enhancement. The spectroscopic behavior with varying the beta-diketonato ligands is discussed in connection with the antiferromagnetic or ferromagnetic coupling constant J values on the basis of the exchange mechanism along with the coligand effect.  相似文献   

14.
Reactions of UCl4 with 25,27-dimethoxy-5,11,17,23-tetra-tert-butylcalix[4]arene (H2Me2calix) in THF or pyridine at 80 degrees C gave [UCl2(Me2calix)L2] [L = THF (1) or pyridine (2)]. Similar treatment of U(acac)(4) (acac = MeCOCHCOMe) with H2Me2calix in THF or pyridine afforded [U(acac)2(Me2calix)] (3). The bis-calixarene compound [U(Me2calix)(H2calix)] (4) was obtained by reaction of U(OTf)4 or U(OTf)3 with H2Me2calix in pyridine at 110 degrees C. Treatment of UCl4 with H2Me2calix in pyridine at 110 degrees C gave [Mepy][UCl2(Hcalix)(py)2] (5) resulting from demethylation and acid cleavage of the methoxy groups of the calixarene ligand of 2. Adventitious traces of air were responsible for the formation of [Hpy][Mepy]4[{UCl(calix)}3(mu3-O)][UCl6] (6) during the reaction of UCl4 and H2Me2calix, and of [{U(Me2calix)(mu3-O)LiCl(THF)}2] (7) during the reaction of 2 with tBuLi. The X-ray crystal structures of 1.2THF, 2.2py, 3.0.25L (L = THF and py), 4.2py, 5, 6.3py and 7.THF have been determined.  相似文献   

15.
Preparation and properties of the following NiII and CuII complexes of the Schiff base derived from acetophenone and ethylenediamine (BAPE) and also of the mixed NiII and CuII chelates with BAPE and acetylacetone (acac-H) are described: In each case the Schiff base, BAPE, acts as a neutral bidentate ligand. The complexes are characterised by electronic spectra, magnetic susceptibilities, conductivities and elemental analyses. Pseudotetrahedral structure is proposed for M(BAPE)C12, while tetragonal structure for [M(BAPE)(acac)(H2O)2]ClO4 (M = Ni and Cu). The complex [Ni(BAPE) (acac)]ClO4 has been found to be square planar.  相似文献   

16.
Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2)(2)(H(2)O)(2)] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn(2)(CCA2)(4)(H(2)O)(2)] structure. Experimental and calculated (1)H, (13)C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes.  相似文献   

17.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

18.
Until recently, tertiary phosphanes, arsanes, and stibanes were considered to bind to transition-metal centers only in a terminal coordination mode. Investigations on the reactivity of square-planar trans-[RhCl(=CRR')(L)(2)] compounds revealed that compounds in which L=SbiPr(3) can be converted upon heating into dinuclear complexes [Rh(2)Cl(2)(micro-CRR')(2)(micro-SbiPr(3))] with the carbene and stibane ligands in bridging positions. Although attempts to replace the stibane in these complexes with a tertiary arsane or phosphane failed, substitution of the chloro ligands for acetylacetonates followed by bridge-ligand exchange allowed the preparation of the phosphane- and arsane-bridged compounds [Rh(2)(acac)(2)(micro-CRR')(2)(micro-PR(3))] and [Rh(2)(acac)(2)(micro-CRR')(2)(micro-AsMe(3))]. The acac ligands can be replaced by anionic Lewis bases to give either monomeric [Rh(2)X(2)(micro-CRR')(2)(micro-ER(3))] or dimeric chain-like [XRh(micro-CRR')(2)(micro-ER(3))Rh(micro-X)(2)Rh(micro-CRR')(2)(micro-ER(3))RhX] molecules.  相似文献   

19.
The reactions of Ga(acac)3 with N-salicylidene-o-aminophenol (saphH2) and its 5-methyl (5MesaphH2) and 5-bromo (5BrsaphH2) derivatives in alcohols afforded the complexes [Ga(acac)(saph)(EtOH)] (1), [Ga(acac)(5Mesaph)(MeOH)] (2) and [Ga(acac)(5Brsaph)(EtOH)] (3), respectively, in good yields. The crystal structures of 1 and 2 have been solved by single-crystal X-ray crystallography. All three complexes are mononuclear with the GaIII atoms being surrounded by a dianionic tridentate Schiff base ligand, one bidentate acac ligand and a terminal alcohol molecule. Characteristic IR data are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

20.
Yang  Ruina  Lin  Kunhua  Hou  Yimin  Wang  Dongmei  Jin  Douman  Luo  Baosheng  Chen  Liaorong 《Transition Metal Chemistry》1997,22(3):254-258
Binuclear copper(I) complexes [Cu(dppm)(NO3)]2 (1), dppm=Ph2PCH2PPh2, [Cu(dppm)(2,9-Me2Phen)]2(NO3)2 (2), [Cu(dppm)(I)]2 (3) and [Cu(dppm)(py)]2(NO3)2 (4), (py=pyridine) have been synthesized by ligand reduction of cupric nitrate with dppm in EtOH and characterized by elemental analyses, molecular weight determination, t.g.a., 31P-n.m.r spectra; their electronic conductivities and c.v. waves have also been measured. The results show that dppm coordinates as a bridging bidentate ligand to the CuI atoms, and that NO3 behaves as a monodentate ligand or free ion in the newly prepared complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号