首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamics of a Cubic Nonlinear Vibration Absorber   总被引:1,自引:0,他引:1  
We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode (plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We obtain an approximate solution to the governing equations using the method of multiple scales and show that the system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic responses.  相似文献   

2.
超声驱动下激励参数对单泡空化振动的影响   总被引:1,自引:0,他引:1  
根据考虑了液体可压缩性的改进的微气泡动力学方程,采用改进的初始半径对单泡超声空化现象进行了数值计算研究.结果表明,微气泡振动对一些参量很敏感:微气泡振动半径与初始半径的比值随振动频率的增大而减小;提高声场声压会加剧气泡崩塌程度,但过高的声压又不能使微气泡崩塌;微气泡崩塌速率随气泡初始半径的增加而增大,在一定范嘲内能保证空化泡稳定振动,在初始半径为1.6μm处空化程度最强,如果继续增大初始半径则空化程度减弱、甚至消失;微气泡崩塌程度随黏滞系数和表面张力的增大而减弱,过大的黏滞系数和表面张力会使微气泡崩塌难以发生.计算结果与他人的实验数据相比,发现液体的可压缩性使单泡空化强度增强,对最佳空化区域范围的确定有较大的影响.  相似文献   

3.
《力学快报》2023,13(3):100438
The interaction of multiple bubbles is a complex physical problem. A simplified case of multiple bubbles is studied theoretically with a bubble located at the center of a circular bubble cluster. All bubbles in the cluster are equally spaced and own the same initial conditions as the central bubble. The unified theory for bubble dynamics [35] is applied to model the interaction between the central bubble and the circular bubble cluster. To account for the effect of the propagation time of pressure waves, the emission source of the wave is obtained by interpolating the physical information on the time axis. An underwater explosion experiment with two bubbles of different scales is used to validate the theoretical model. The effect of the bubble cluster with a variation in scale on the pulsation characteristics of the central bubble is studied.  相似文献   

4.
The dynamics of a simplified model of a spinning spacecraft with a circumferential nutational damper is investigated using numerical simulations for nonlinear phenomena. A realistic spacecraft parameter configuration is investigated and is found to exhibit chaotic motion when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. Such a torque, in practice, may arise in the platform of a dual-spin spacecraft under malfunction of the control system or from an unbalanced rotor or from vibrations in appendages. The equations of motion of the model are derived with Lagrange's equations using a generalisation of the kinetic energy equation and a linear stability analysis is given. Numerical simulations for satellite parameters are performed and the system is found to exhibit chaotic motion when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. The motion is studied by means of time history, phase space, frequency spectrum, Poincaré map, Lyapunov characteristic exponents and Correlation Dimension. For sufficiently large values of torque amplitude, the behaviour of the system was found to have much in common with a two well potential problem such as a Duffing oscillator. Evidence is also presented, indicating that the onset of chaotic motion was characterised by period doubling as well as intermittency.  相似文献   

5.
This work presents a sensitivity analysis for cavitation processes, studying in detail the effect of various model parameters on the bubble collapse. A complete model (Hauke et al. Phys Rev E 75:1–14, 2007) is used to obtain how different parameters influence the collapse in SBSL experiments, providing some clues on how to enhance the bubble implosion in real systems. The initial bubble radius, the frequency and the amplitude of the pressure wave are the most important parameters determining under which conditions cavitation occurs. The range of bubble sizes inducing strong implosions for different frequencies is computed; the initial radius is the most important parameter characterized the intensity of the cavitation processes. However, other parameters like the gas and liquid conductivity or the liquid viscosity can have an important effect under certain conditions. It is shown that mass transfer processes play an important role in order to correctly predict the trends related with the effect of the liquid temperature, which translates into the bubble dynamics. Moreover, under some particular circumstances, evaporation can be encountered during the bubble collapse; this can be profitably exploited in order to feed reactants when the most extreme conditions inside the bubbles are reached. Thus, this paper aims at providing a global assessment of the effect of the different parameters on the entire cycle of a single cavitating spherical bubble immersed in an ultrasonic field. This work has been partially supported by Ministerio de Ciencia y Tecnologia, under grant number CTM2004-06184-C02-02.  相似文献   

6.
《力学学报》2009,41(1):8
根据考虑了液体可压缩性的改进的微气泡动力学方程,采用改进的初始半径对单泡超声空化现象进行了数值计算研究. 结果表明,微气泡振动对一些参量很敏感:微气泡振动半径与初始半径的比值随振动频率的增大而减小;提高声场声压会加剧气泡崩塌程度,但过高的声压又不能使微气泡崩塌;微气泡崩塌速率随气泡初始半径的增加而增大,在一定范围内能保证空化泡稳定振动,在初始半径为1.6\,$\mu$m 处空化程度最强,如果继续增大初始半径则空化程度减弱、甚至消失;微气泡崩塌程度随黏滞系数和表面张力的增大而减弱,过大的黏滞系数和表面张力会使微气泡崩塌难以发生. 计算结果与他人的实验数据相比,发现液体的可压缩性使单泡空化强度增强, 对最佳空化区域范围的确定有较大的影响.  相似文献   

7.
In the present paper, the nonlinear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. Effects of viscoelasticity term, Deborah number, amplitude and frequency of the acoustic pulse are studied. We have studied the dynamic behavior of the radial response of bubble using Lyapunov exponent spectra, bifurcation diagrams, time series and phase diagram. A period-doubling bifurcation structure is predicted to occur for certain values of the effects of parameters. The results show that by increasing the elasticity of the fluid, the growth phenomenon will be unstable. On the other hand, when the frequency of the external pulse increases the bubble growth experiences more stable condition. It is shown that the results are in good agreement with the previous studies.  相似文献   

8.
Amplitude chimera states, representing a spontaneous symmetry breaking of a population of coupled identical oscillators into two distinct clusters with one oscillating in spatial coherent amplitude, while the other displaying oscillations in a spatially incoherent manner, have been observed as a kind of transient dynamics in the process of transition to the in-phase synchronization in coupled limit-cycle oscillators. Here, we obtain a kind of stable amplitude chimera state in the chaotic regime of a system of repulsively coupled Lorenz oscillators. With the increment of the coupling strength, the coupled oscillators transit from spatiotemporal chaos to amplitude chimera states then to coherent oscillation death or chimera death states. Moreover, the number of clusters in amplitude chimera patterns has a power-law dependence on the number of coupled neighbors. The amplitude chimera and the chimera death states coexist at certain coupling strength. Moreover, the amplitude chimera and the amplitude death patterns are related to the initial condition for given coupling strength. Our findings of amplitude chimera states and chimera death states in coupled chaotic system may enrich the knowledge of the symmetry-breaking-induced pattern formation.  相似文献   

9.
The primary Bjerknes force experienced by a population of multiple bubbles in a liquid set in a nonlinear ultrasonic standing field and their translation are calculated and analyzed by numerical simulations. The force field is evaluated by considering the nonlinear bubble oscillations as well as the nonlinear character of the ultrasonic pressure field (both variables are unknown in the coupled nonlinear differential system). The results at small amplitudes agree with the classical theory on bubble translation, depending on the driving frequency in relation to the bubble resonance. It is shown that, when amplitudes are raised, the force field exhibits important modifications that strongly affect the motion of the bubbles and the way they form agglomerates. An analysis is performed on the importance of the terms in the differential system that provoke (a) the nonlinearity of the bubble oscillations and (b) the nonlinearity of the acoustic wave. This study reveals that both features should be considered to better approximate the primary Bjerknes force field. Simulations of the nonlinear ultrasonic field after the bubbles form agglomerates under the influence of this force are also performed.  相似文献   

10.
The employment of different mathematical models to address specifically for the bubble nucleation rates of water vapour and dissolved air molecules is essential as the physics for them to form bubble nuclei is different. The available methods to calculate bubble nucleation rate in binary mixture such as density functional theory are complicated to be coupled along with computational fluid dynamics (CFD) approach. In addition, effect of dissolved gas concentration was neglected in most study for the prediction of bubble nucleation rates. The most probable bubble nucleation rate for the water vapour and dissolved air mixture in a 2D quasi-stable flow across a cavitating nozzle in current work was estimated via the statistical mean of all possible bubble nucleation rates of the mixture (different mole fractions of water vapour and dissolved air) and the corresponding number of molecules in critical cluster. Theoretically, the bubble nucleation rate is greatly dependent on components’ mole fraction in a critical cluster. Hence, the dissolved gas concentration effect was included in current work. Besides, the possible bubble nucleation rates were predicted based on the calculated number of molecules required to form a critical cluster. The estimation of components’ mole fraction in critical cluster for water vapour and dissolved air mixture was obtained by coupling the enhanced classical nucleation theory and CFD approach. In addition, the distribution of bubble nuclei of water vapour and dissolved air mixture could be predicted via the utilisation of population balance model.  相似文献   

11.
The nonlinear dynamics of a clamped-clamped/sliding inextensional elastic beam subject to a harmonic axial load is investigated. The Galerkin method is used on the coupled bending-bending-torsional nonlinear equations with inertial and geometric nonlinearities and the resulting two second order ordinary differential equations are studied by the method of multiple time seales and by direct numerical integration. The amplitude equations are analyzed for steady and Hopf bifurcations. Depending on the amplitude of excitation, the damping and the ratio of principal flexural rigidities, various qualitatively distinct frequency response diagrams are uncovered and limit cycles and chaotic motions are found. In the truncated two-degree-of-freedom system the transition from periodic to chaotic amplitude-modulated motions is via the process of torus doubling and subsequent destruction of the torus.  相似文献   

12.
Results are presented of the calculation of the thresholds (in terms of peak acoustic pressure as a function of frequency of the incident ultrasonic wave), at which rectified diffusion may begin in environments represented by the liquid/cell structure of biological tissue, exposed to ultrasonic frequencies, 1–4 MHz, typical for clinical devices. Computations based on excitation by peak pressure amplitude values typical for continuous and pulse-echo diagnostic devices, suggests that rectified diffusion is unlikely to occur for the latter only. Acoustically induced shear stresses, caused by bubble pulsation produced microstreaming and affecting the integrity of cellular membranes, are evaluated and are found to lie above levels at which biological effects have been observed.  相似文献   

13.
Coupled shape oscillations and translational motion of an incompressible gas bubble in a vibrating liquid container is studied numerically. The bubble oscillation characteristics are mapped based on the bubble Bond number (Bo) and the ratio of the vibration amplitude of the container to the bubble diameter (A/D). At small Bo and A/D, the bubble oscillation is found to be linear with small amplitudes, and at large Bo and A/D, it is nonlinear and chaotic. This chaotic bubble oscillation is similar to those observed in two coupled nonlinear systems, here being the gas inside the bubble and its surrounding liquid. Further increases in the forcing, results in the bubble breakup due to large liquid inertia.  相似文献   

14.
Measurement of bubble size and local average bubble rise velocity was carried out in a vertically sinusoidal vibro-fluidized bed. Glass beads of Geldart group B particles were fluidized at different gas velocities, while the bed was vibrated at different frequencies and amplitudes to study their effects on the bubble behavior. This is compared with the case of no vibration in a two-dimensional bed and it is concluded that with vibration the local average bubble size, dbav, decreases significantly, especially at minimum bubbling velocity. The average bubble size increases slightly with increasing vibration frequency and amplitude. The local average bubble rise velocity is higher than that with no vibration, though with increasing vibration frequency and amplitude, it does not change significantly.  相似文献   

15.
本文从流体动力学角度探究气泡下沉现象的机理,对垂直振动圆柱容器中的气泡下沉行为进行了系统研究。根据附加质量以及气泡压缩性概念,建立出现下沉效应的可压缩性气泡数学模型,并通过分离变量法分析气泡下沉的临界位移以及运动速度。研究表明,正弦激励振幅以及频率是影响气泡下沉条件的重要因素,决定了临界位移与运动速度的大小,且振幅和频率越大,临界位移越小,气泡越容易下沉。  相似文献   

16.
17.
Summary  It was often observed that friction forces can be reduced significantly if ultrasonic oscillations are superposed to the macroscopic sliding velocity. This phenomenon can be used to improve machining processes by addition of ultrasonic vibration to tools or workpieces, and forms the basis for many processes of ultrasonic machining. On the other hand, ultrasonic vibrations can be used to generate motion. The thrusting force of ultrasonic motors is provided to the rotor through friction. In the present paper, a simple theoretical model for friction in the presence of ultrasonic oscillations is derived theoretically and validated experimentally. The model is capable of predicting the reduction of the macroscopic friction force as a function of the ultrasonic vibration frequency and amplitude and the macroscopic sliding velocity. Received 22 November 2000; accepted for publication 6 February 2001  相似文献   

18.
This work examines the effect of local active flow control on stability and transition in a laminar separation bubble. Experiments are performed in a wind tunnel facility on a NACA 0012 airfoil at a chord Reynolds number of 130 000 and an angle of attack of 2 degrees. Controlled disturbances are introduced upstream of a laminar separation bubble forming on the suction side of the airfoil using a surface-mounted Dielectric Barrier Discharge plasma actuator. Time-resolved two-component Particle Image Velocimetry is used to characterise the flow field. The effect of frequency and amplitude of plasma excitation on flow development is examined. The introduction of artificial harmonic disturbances leads to significant changes in separation bubble topology and the characteristics of coherent structures formed in the aft portion of the bubble. The development of the bubble demonstrates strong dependence on the actuation frequency and amplitude, revealing the dominant role of incoming disturbances in the transition scenario. Statistical, topological and linear stability theory analysis demonstrate that significant mean flow deformation produced by controlled disturbances leads to notable changes in stability characteristics compared to those in the unforced baseline case. The findings provide a new outlook on the role of controlled disturbances in separated shear layer transition and instruct the development of effective flow control strategies.  相似文献   

19.
The dynamic alterations of an electronic circuit in a chaotic regime, described by the Double Scroll attractor, subjected to sinusoidal perturbation are numerically investigated. Parameter diagrams of the circuit phase-locking oscillations in terms of the driving amplitude and frequency are computed. These diagrams have highly interleaved and complex structures, part of them Cantor-like fractals. However, a Cantor-like fractal structure is also observed. In addition, the power spectrum analysis is used to find and characterize three ways of phase-locking the Double Scroll circuit, and to determine how this process depends on the driving parameters. Furthermore, the dynamics of bifurcation phenomena, as chaotic attractor entrainment, Arnold's tongues, coexistence of attractors, and hysteresis are identified in the parameter space.  相似文献   

20.
Ellipsoidal linear and nonlinear oscillations of a gas bubble under harmonic variation of the surrounding fluid pressure are studied. The system is considered under conditions in which periodic sonoluminescence of the individual bubble in a standing acoustic wave is observable. A mathematical model of the bubble dynamics is suggested; in this model, the variation of the gas/fluid interface shape is described correct to the square of the amplitude of the deformation of the spherical shape of the bubble. The character of the air bubble oscillations in water is investigated in relation to the initial bubble radius and the fluid pressure variation amplitude. It is shown that nonspherical oscillations of limited amplitude can occur outside the range of linearly stable spherical oscillations. In this case, both oscillations with a period equal to one or two periods of the fluid pressure variation and aperiodic oscillations can be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号