首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a simple chaotic system that contains one multiplier and one quadratic term. The system is similar to the generalized Lorenz system but is not topologically equivalent. The properties of the proposed chaotic system are examined by theoretical and numerical analysis. An analog chaotic circuit is implemented that realizes the chaotic system for the verification of its attractor. Furthermore, we propose a robust function projective synchronization using time delay estimation. A numerical simulation of synchronization between the proposed system and the Lorenz system demonstrates that the proposed approach provides fast and robust synchronization even in the presence of unknown parameter variations and disturbances.  相似文献   

2.
We investigate the stability of the synchronization manifold in a ring and in an open-ended chain of nearest neighbor coupled self-sustained systems, each self-sustained system consisting of multi-limit cycle van der Pol oscillators. Such a model represents, for instance, coherent oscillations in biological systems through the case of an enzymatic-substrate reaction with ferroelectric behavior in a brain waves model. The ring and open-ended chain of identical and nonidentical oscillators are considered separately. By using the Master Stability Function approach (for the identical case) and the complex Kuramoto order parameter (for the nonidentical case), we derive the stability boundaries of the synchronized manifold. We have found that synchronization occurs in a system of many coupled modified van der Pol oscillators, and it is stable even in the presence of a spread of parameters.  相似文献   

3.
In this work, we study the synchronization of two coupled chaotic oscillators. The uncoupled system corresponds to a mass attached to a nonlinear spring and driven by a rolling carpet. For identical oscillators, complete synchronization is analyzed using Lyapunov stability theory. This first analysis reveals that stability area of synchronization increases with the values of the coupling coefficient. Numerical simulations are shown to illustrate and validate stick-slip and chaos synchronization. Some cases of anti-synchronization are detected. Curiously, amplification of fixed point either regular or chaotic is observed in the area of anti-synchronization. Furthermore, phase synchronization is studied for nonidentical oscillators. It appears that for certain values of the coupling coefficient, coincidence of the phases is obtained, while the amplitudes remain uncorrelated. Contrarily to the case of complete synchronization, it does not exist a threshold of the coupling from which phase synchronization could appear. Besides, when we add the modified tuned mass damper on the structure, the behavior of the system can change including the appearance of synchronization, particularly in the region of fixed point. More precisely, complete synchronization is improved in the region of fixed point, while the damage of synchronization is observed when the velocity of the carpets is less than \(0.30\) .  相似文献   

4.
5.
Premraj  D.  Manoj  Krishna  Pawar  Samadhan A.  Sujith  R. I. 《Nonlinear dynamics》2021,103(2):1439-1452

The occurrence of synchronization and amplitude death phenomena due to the coupled interaction of limit cycle oscillators (LCO) has received increased attention over the last few decades in various fields of science and engineering. Studies pertaining to these coupled oscillators are often performed by studying the effect of various coupling parameters on their mutual interaction. However, the effect of system parameters (i.e., the amplitude and frequency) on the coupled interaction of such LCO has not yet received much attention, despite their practical importance. In this paper, we investigate the dynamical behavior of time-delay coupled Stuart–Landau (SL) oscillators exhibiting subcritical Hopf bifurcation for the variation of amplitude and frequency of these oscillators in their uncoupled state. For identical SL oscillators, a gradual increase in the amplitude of LCO shrinks the amplitude death regions observed between the regions of in-phase and anti-phase synchronization leading to its eventual disappearance, resulting in the occurrence of phase-flip bifurcations at higher amplitudes of LCO. We also observe an alternate existence of in-phase and anti-phase synchronization regions for higher values of time delay, whose prevalence of occurrence increases with an increase in the frequency of the oscillator. With the introduction of frequency mismatch, the region of amplitude death. The forced response of SL oscillator shows an asymmetry in the Arnold tongue and the manifestation of asynchronous quenching of LCO. An increase in the amplitude of LCO narrows the Arnold tongue and reduces the region of asynchronous quenching observed in the system. Finally, we compare the coupled and forced response of SL oscillators with the corresponding experimental results obtained from laminar thermoacoustic oscillators and the numerical results from van der Pol (VDP) oscillators. We show that the SL model qualitatively displays many features observed experimentally in coupled and forced thermoacoustic oscillators. In contrast, the VDP model does not capture most of the experimental results due to the limitation in the independent variation of system parameters.

  相似文献   

6.
In this paper, a novel adaptive fractional-order feedback controller is first developed by extending an adaptive integer-order feedback controller. Then a simple but practical method to synchronize almost all familiar fractional-order chaotic systems has been put forward. Through rigorous theoretical proof by means of the Lyapunov stability theorem and Barbalat lemma, sufficient conditions are derived to guarantee chaos synchronization. A wide range of fractional-order chaotic systems, including the commensurate system and incommensurate case, autonomous system, and nonautonomous case, is just the novelty of this technique. The feasibility and validity of presented scheme have been illustrated by numerical simulations of the fractional-order Chen system, fractional-order hyperchaotic Lü system, and fractional-order Duffing system.  相似文献   

7.
In this study, we investigate a class of chaotic synchronization and anti-synchronization with stochastic parameters. A controller is composed of a compensation controller and a fuzzy controller which is designed based on fractional stability theory. Three typical examples, including the synchronization between an integer-order Chen system and a fractional-order Lü system, the anti-synchronization of different 4D fractional-order hyperchaotic systems with non-identical orders, and the synchronization between a 3D integer-order chaotic system and a 4D fractional-order hyperchaos system, are presented to illustrate the effectiveness of the controller. The numerical simulation results and theoretical analysis both demonstrate the effectiveness of the proposed approach. Overall, this study presents new insights concerning the concepts of synchronization and anti-synchronization, synchronization and control, the relationship of fractional and integer order nonlinear systems.  相似文献   

8.
Reed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician. A set of nonlinear equations connects the control parameters (mouth pressure, lip force) to the system output, hereby considered as the mouthpiece pressure. Clarinets can then be studied as dynamical systems; their steady behavior being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless straight cylinder is a dramatic yet common simplification that allows for simulations using nonlinear iterative maps. This paper investigates analytically the effect of a linearly increasing blowing pressure on the behavior of this simplified clarinet model. When the control parameter varies, results from the so-called dynamic bifurcation theory are required to properly analyze the system. This study highlights the phenomenon of bifurcation delay and defines a new quantity, the dynamic oscillation threshold. A theoretical estimation of the dynamic oscillation threshold is proposed and compared with numerical simulations.  相似文献   

9.
We present two different approaches to detect and quantify phase synchronization in the case of coupled non-phase coherent oscillators. The first one is based on the general idea of curvature of an arbitrary curve. The second one is based on recurrences of the trajectory in phase space. We illustrate both methods in the paradigmatic example of the R?ssler system in the funnel regime. We show that the second method is applicable even in the case of noisy data. Furthermore, we extend the second approach to the application of chains of coupled systems, which allows us to detect easily clusters of synchronized oscillators. In order to illustrate the applicability of this approach, we show the results of the algorithm applied to experimental data from a population of 64 electrochemical oscillators.  相似文献   

10.

This work deals with the dynamics of a network of piezoelectric micro-beams (a stack of disks). The complete synchronization condition for this class of chaotic nonlinear electromechanical system with nearest-neighbor diffusive coupling is studied. The nonlinearities within the devices studied here are in both the electrical and mechanical components. The investigation is made for the case of a large number of coupled discrete piezoelectric disks. The problem of chaos synchronization is described and converted into the analysis of the stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having shift invariant coupling schemes can be calculated from the synchronization of two of them. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators.

  相似文献   

11.
In this paper we present an analytic methodology for the analysis of a class of electrical harmonic oscillators. We combine geometric methods with the theory of singularly perturbed systems, which we use as tool for reduced order modeling. So we are able to define an easy to use formula in order to reduce an oscillatory system to center manifold. Thus we get a model for the start-up behavior as well as for the steady-state oscillation of sinusoidal oscillators. Furthermore, we demonstrate our technique by means of the Clapp oscillator which is an important member of the Colpitts, Clapp and Pierce oscillator family.  相似文献   

12.
The global homoclinic bifurcation and transition to chaotic behavior of a nonlinear gear system are studied by means of Melnikov analytical analysis. It is also an effective approach to analyze homoclinic bifurcation and detect chaotic behavior. A generalized nonlinear time varying (NLTV) dynamic model of a spur gear pair is formulated, where the backlash, time varying stiffness, external excitation, and static transmission error are included. From Melnikov method, the threshold values of the control parameter for the occurrence of homoclinic bifurcation and onset of chaos are predicted. Additionally, the numerical bifurcation analysis and numerical simulation of the system including bifurcation diagrams, phase plane portraits, time histories, power spectras, and Poincare sections are used to confirm the analytical predictions and show the transition to chaos.  相似文献   

13.
An electromechanical system with flexible arm is considered. The mechanical part is a linear flexible beam and the electrical part is a nonlinear self-sustained oscillator. Oscillatory solutions are obtained using an averaging method. Chaotic behavior is studied via the Lyapunov exponent. The synchronization of regular and chaotic states of two such devices is discussed and the stability boundaries for the synchronization process are derived using the Floquet theory. We compare the results obtained from a finite difference simulation to those from the classical modal approach.  相似文献   

14.
Phase synchronization between nonlinearly coupled systems With 1:1 and 1:2 resonances is investigated.BY introducing a concept of phase for a chaotic motion.it is demonstrated that for difierent internal resonances,with relatively small parameter epsilon,the difierence between the mean frequencies of the two sub-oscillators approaches zero.This implies that phase synchronization can be achieved for weak interaction between the two oscillators.With the increase in coupling strength,fluctuations of the frequency difference can be observed,and for the primary resonance,the amplitudes of the fluctuations of the difference seem much smaller compared to the case with frequency ratio 1:2.even with the weak coupling strength.Unlike the enhanced effect on synchronization for linear coupling,the increase in nonlinear coupling strength results in the transition from phase synchronization to a non-synchronized state.Further investigation reveals that the states from phase synchronization to non-synchronization are related to the critical changes of the Lyapunov exponents,which carl also be explained with the diffuse clouds.  相似文献   

15.
In this paper, the synchronization problem for a class of neutral complex dynamical networks with coupling time-varying delays is considered. A delay-dependent synchronization criterion is derived for the synchronization of neutral complex dynamical networks. By the use of a convex representation of the sector-restricted nonlinearity in system dynamics, the stability condition based on the discretized Lyapunov?CKrasovskii functional is obtained via LMI (linear matrix inequality) formulation. The effectiveness of our work is verified through a numerical example and simulation.  相似文献   

16.
It is possible that self-excited vibrations in turbomachine blades synchronize due to elastic coupling through the shaft. The synchronization of four coupled van der Pol oscillators is presented here as a simplified model. For quasilinear oscillations, a stability condition is derived from an analysis based on linearizing the original equation around an unperturbed limit cycle and transforming it into Hill’s equation. For the nonlinear case, numerical simulations show the existence of two well-defined regions of phase relationships in parameter space in which a multiplicity of periodic attractors is embedded. The size of these regions strongly depends on the values of the oscillator and coupling constants. For the coupling constant below a critical value, there exists a region in which a diversity of phase-shift attractors is present, whereas for values above the critical value an in-phase attractor is predominant. It is observed that the presence of an anti-phase attractor in the subcritical region is associated with sudden changes in the period of the coupled oscillators. The convergence of the coupled system to a particular periodic attractor is explored using several initial conditions. The study is extended to non-identical oscillators, and it is found that there is synchronization even over a wide range of difference among the oscillator constants.  相似文献   

17.
Phase synchronization between nonlinearly coupled systems with 1:1 and 1:2 resonances is investigated. By introducing a concept of phase for a chaotic motion, it is demonstrated that for different internal resonances, with relatively small parameter epsilon, the difference between the mean frequencies of the two sub-oscillators approaches zero. This implies that phase synchronization can be achieved for weak interaction between the two oscillators. With the increase in coupling strength, fluctuations of the frequency difference can be observed, and for the primary resonance, the amplitudes of the fluctuations of the difference seem much smaller compared to the case with frequency ratio 1:2, even with the weak coupling strength. Unlike the enhanced effect on synchronization for linear coupling, the increase in nonlinear coupling strength results in the transition from phase synchronization to a non-synchronized state. Further investigation reveals that the states from phase synchronization to non-synchronization are related to the critical changes of the Lyapunov exponents, which can also be explained with the diffuse clouds.  相似文献   

18.
A system consisting of two linearly coupled chaotic Colpitts oscillators is considered. Two different coupling configurations, namely coupled collector nodes (C–C) and coupled emitter nodes (E–E) have been investigated. In addition to identical oscillators the case of mismatched circuits has been studied. Specifically the influence of the transistor parameter mismatch has been analyzed. The relative synchronization error has been estimated for different mismatch levels provided the coupling coefficient is twice larger than the synchronization threshold. Illustrative experimental results, including phase portraits and synchronization error are presented.  相似文献   

19.
本文以镶嵌在平板上沿展向对放的两个压电陶瓷振子为主动控制激励器,自主设计了零质量射流主动控制湍流边界层减阻实验方案.在风洞中开展了双压电振子同步和异步振动主动控制湍流边界层减阻的实验研究,实现了压电振子的周期扰动对湍流边界层多尺度相干结构的干扰和调制,施加控制后减小了壁面摩擦阻力,获得减阻效果.当异步控制100 V, 160 Hz工况时得到最大减阻率为18.54%.小波多尺度分析结果表明,施加控制工况中PZT振子的周期性扰动使得小尺度结构的湍流脉动强度增强,改变了近壁区大尺度和小尺度结构的含能分布,且异步控制工况比同步控制工况的减阻效果好.当双振子振动频率为160 Hz时,流向脉动速度的小波系数PDF曲线呈现出波动特征,尾部变宽显著,近壁湍流脉动更加有序和规则,湍流间歇性减弱.对小尺度脉动进行条件相位平均的结果表明,施加PZT周期扰动后使得大尺度结构破碎成为小尺度结构,小尺度脉动强度增强,实现减阻.随着流向位置离PZT振子越来越远,周期性扰动对相干结构的调制作用逐渐减弱.  相似文献   

20.
This paper investigates the phenomenon of chaos synchronization of two different chaotic complex systems of the Chen and Lü type via the methods of active control and global synchronization. In this regard, it generalizes earlier work on the synchronization of two identical oscillators in cases where the drive and response systems are different, the parameter space is larger, and the dimensionality increases due to the complexification of the dependent variables. The idea of chaos synchronization is to use the output of the drive system to control the response system so that the output of the response system converges to the output of the drive system as time increases. Lyapunov functions are derived to prove that the differences in the dynamics of the two systems converge to zero exponentially fast, explicit expressions are given for the control functions and numerical simulations are presented to illustrate the success of our chaos synchronization techniques. We also point out that the global synchronization method is better suited for synchronizing identical chaotic oscillators, as it has serious limitations when applied to the case where the drive and response systems are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号