首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we investigate the stability and bifurcation of a class of coupled nonlinear relative rotation system with multi-time delay feedbacks. Using dissipative system Lagrange equation, the dynamics equation of coupled nonlinear relative rotation system with three masses is established. The dynamical behaviors of the system under multi-time delay feedbacks, with two state variables, are discussed. First, characteristic roots and the stable regions of time delay are determined by direct method. The relation between two time delays ratio or time delay feedbacks gains and the stable regions of time delay is analyzed. Second, the direction and stability of Hopf bifurcation are decided by normal form theorem and center manifold argument. Finally, numerical simulation can confirm the validity of the conclusion.  相似文献   

2.
This paper reveals the dynamics of a neural network of four neurons with multiple time delays and a short-cut connection through a combined study of theoretical analysis, numerical simulations, and experiments. The first step of the study is to derive the sufficient conditions for the stability and instability of the network equilibrium, and the second step is to determine the properties of the periodic response bifurcating from a Hopf bifurcation of the network equilibrium on the basis of the normal form and the center manifold reduction. Afterwards, the study turns to the validation of theoretical results through numerical simulations and a circuit experiment. The case studies show that both numerical simulations and circuit experiment get a nice agreement with theoretical results.  相似文献   

3.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

4.
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.  相似文献   

5.
黄羽  徐鉴 《力学季刊》2005,26(4):669-672
众所周知,平面自治系统即使具有光滑非线性存在,系统也不会出现复杂的动力学行为。本文研究这样的系统存在时滞时,时滞量对系统的动力学行为的影响。通过对一个平面自治非线性系统引入时滞反馈,得到数学模型。利用泛函分析和平均法建立系统平衡态随时滞量变化的失稳机理,研究表明:时滞量平面自治系统动力学行为的影响是本质的.时滞量不但可以使系统出现Hopf分岔,产生周期振动。而且还可以使系统出现多稳态的周期运动或周期吸引子,这些共存的吸引子相碰是导致系统复杂的动力学行为,包括概周期和混沌运动。  相似文献   

6.
Considering the macroeconomic model of money supply, this paper carries out the corresponding extension of the complex dynamics to macroeconomic model with time delays. By setting the parameters, we discuss the effect of delay variation on system stability and Hopf bifurcation. Results of analysis show that the stability of time-delay systems has important significance with the length of time delay. When time delay is short, the stable point of the system is still in a stable region; when time delay is long, the equilibrium point of the system will go into chaos, and the Hopf bifurcation will appear in certain conditions. In this paper, using the normal form theory and center manifold theorem, the periodic solutions of the system are obtained, and the related numerical analysis are also given; this paper has important innovation-theoretical value and acts as important actual application in macroeconomic system.  相似文献   

7.
X. Xu  Z. H. Wang 《Nonlinear dynamics》2009,56(1-2):127-144
This paper presents a detailed analysis on the dynamics of a ring network with small world connection. On the basis of Lyapunov stability approach, the asymptotic stability of the trivial equilibrium is first investigated and the delay-dependent criteria ensuring global stability are obtained. The existence of Hopf bifurcation and the stability of periodic solutions bifurcating from the trivial equilibrium are then analyzed. Further studies are paid to the effects of small world connection on the stability interval and the stability of periodic solution. In particular, some complex dynamical phenomena due to short-cut strength are observed numerically, such as: period-doubling bifurcation and torus breaking to chaos, the coexistence of multiple periodic solutions, multiple quasi-periodic solutions, and multiple chaotic attractors. The studies show that small world connection may be used as a simple but efficient “switch” to control the dynamics of a system.  相似文献   

8.
Nonlinear time delay differential equations are well known to havearisen in models in physiology, biology and population dynamics. Theyhave also arisen in models of metal cutting processes. Machine toolchatter, from a process called regenerative chatter, has been identifiedas self-sustained oscillations for nonlinear delay differentialequations. The actual chatter occurs when the machine tool shifts from astable fixed point to a limit cycle and has been identified as arealized Hopf bifurcation. This paper demonstrates first that a class ofnonlinear delay differential equations used to model regenerativechatter satisfies the Hopf conditions. It then gives a precisecharacterization of the critical eigenvalues on the stability boundaryand continues with a complete development of the Hopf parameter, theperiod of the bifurcating solution and associated Floquet exponents.Several cases are simulated in order to show the Hopf bifurcationoccurring at the stability boundary. A discussion of a method ofintegrating delay differential equations is also given.  相似文献   

9.
In this paper, a delayed predator-prey model with dormancy of predators is investigated. It shows that time delay in the prey-species growth can lead to the occurrence of Hopf bifurcation with stability switches at a coexistence equilibrium. The computing formulas of stability and direction of the Hopf bifurcating periodic solutions are given. Under appropriate conditions, the uniform persistence of this model with time delay is proved. In this simple model, multiple periodic solutions coexist. Through numerical simulation, it is shown that different values of time delay can generate or eliminate chaos. Biologically, our results imply that dynamical behaviors of this system with time delay strongly depend on the initial density of this model and the time delay of the growth of the prey.  相似文献   

10.
Dynamics of milling processes with variable time delays   总被引:5,自引:0,他引:5  
A milling-process model with a variable time delay associated with each cutting tooth is presented in this article. The source of this variable time delay is the feed rate. The effect of the feed motion on the entry cutting angle, the exit cutting angle, and the amplitude of feed mark is also discussed. Loss-of-contact effects are also considered. The system dynamics is described by a set of delay differential equations with periodic coefficients and variable time delays. A semi-discretization scheme is presented for analyzing the stability of periodic orbits of this system. The analysis provides evidence of period-doubling bifurcations and secondary Hopf bifurcations. Good agreement is found between the numerical results obtained from this work and the results of related experimental studies.  相似文献   

11.
In this paper, we consider the effect of distributed delays in a three-neuron unidirectional ring. Sufficient conditions for existence of unique equilibrium, multiple equilibria and their local stability are derived. Taking the average delay as a bifurcation parameter, we find two critical values at which the system undergoes Hopf bifurcations. The orbital asymptotic stability of the Hopf bifurcating periodic solutions is investigated by using the method of multiple scales. The global Hopf bifurcation is also studied. Finally, the theoretical results are illustrated by some numerical simulations.  相似文献   

12.
This paper presents a systematic study on aeroelastic stability of a two-dimensional airfoil with a single or multiple time delays in the feedback control loops. Firstly, the delay-independent stability region of the aeroelastic system with a single time delay is determined on the basis of the generalized Sturm criterion for polynomials. Then, the stability switches with variations in time delay are analyzed when the system parameters fall out of the delay-independent stability region. Flutter boundaries of the controlled aeroelastic system as time delay varies are predicted in a continuous way by the predictor-corrector technique. Finally, two methods, the polynomial eigenvalue method and the infinitesimal generator method, are introduced to investigate the stability of the controlled aeroelastic system with multiple time delays. Numerical simulations are made to demonstrate the effectiveness of all the above approaches.  相似文献   

13.
A simple delayed neural network model with three neurons is considered. By constructing suitable Lyapunov functions, we obtain sufficient delay-dependent criteria to ensure global asymptotical stability of the equilibrium of a tri-neuron network with single time delay. Local stability of the model is investigated by analyzing the associated characteristic equation. It is found that Hopf bifurcation occurs when the time delay varies and passes a sequence of critical values. The stability and direction of bifurcating periodic solution are determined by applying the normal form theory and the center manifold theorem. If the associated characteristic equation of linearized system evaluated at a critical point involves a repeated pair of pure imaginary eigenvalues, then the double Hopf bifurcation is also found to occur in this model. Our main attention will be paid to the double Hopf bifurcation associated with resonance. Some Numerical examples are finally given for justifying the theoretical results.  相似文献   

14.
The congestion control algorithm, which has dynamic adaptations at both user ends and link ends, with heterogeneous delays is considered and analyzed. Some general stability criteria involving the delays and the system parameters are derived by generalized Nyquist criteria. Furthermore, by choosing one of the delays as the bifurcation parameter, and when the delay exceeds a critical value, a limit cycle emerges via a Hopf bifurcation. Resonant double Hopf bifurcation is also found to occur in this model. An efficient perturbation-incremental method is presented to study the delay-induced resonant double Hopf bifurcation. For the bifurcation parameter close to a double Hopf point, the approximate expressions of the periodic solutions are updated iteratively by use of the perturbation-incremental method. Simulation results have verified and demonstrated the correctness of the theoretical results.  相似文献   

15.
The present paper reports the design and analysis of a new time-delayed chaotic system and its electronic circuit implementation. The system is described by a first-order nonlinear retarded type delay differential equation with a closed form mathematical function describing the nonlinearity. We carry out stability and bifurcation analysis to show that with the suitable delay and system parameters the system shows sustained oscillation through supercritical Hopf bifurcation. It is shown through numerical simulations that the system depicts bifurcation and chaos for a certain range of the system parameters. The complexity and predictability of the system are characterized by Lyapunov exponents and Kaplan?CYork dimension. It is shown that, for some suitably chosen system parameters, the system shows hyperchaos even for a small or moderate delay. Finally, we set up an experiment to implement the proposed system in electronic circuit using off-the-shelf circuit elements, and it is shown that the behavior of the time delay chaotic electronic circuit agrees well with our analytical and numerical results.  相似文献   

16.
J. C. Ji 《Nonlinear dynamics》2014,78(3):2161-2184
Stable bifurcating solutions may appear in an autonomous time-delayed nonlinear oscillator having quadratic nonlinearity after the trivial equilibrium loses its stability via two-to-one resonant Hopf bifurcations. For the corresponding non-autonomous time-delayed nonlinear oscillator, the dynamic interactions between the periodic excitation and the stable bifurcating solutions can induce resonant behaviour in the forced response when the forcing frequency and the frequencies of Hopf bifurcations satisfy certain relationships. Under hard excitations, the forced response of the time-delayed nonlinear oscillator can exhibit three types of secondary resonances, which are super-harmonic resonance at half the lower Hopf bifurcation frequency, sub-harmonic resonance at two times the higher Hopf bifurcation frequency and additive resonance at the sum of two Hopf bifurcation frequencies. With the help of centre manifold theorem and the method of multiple scales, the secondary resonance response of the time-delayed nonlinear oscillator following two-to-one resonant Hopf bifurcations is studied based on a set of four averaged equations for the amplitudes and phases of the free-oscillation terms, which are obtained from the reduced four-dimensional ordinary differential equations for the flow on the centre manifold. The first-order approximate solutions and the nonlinear algebraic equations for the amplitudes and phases of the free-oscillation terms in the steady state solutions are derived for three secondary resonances. Frequency-response curves, time trajectories, phase portraits and Poincare sections are numerically obtained to show the secondary resonance response. Analytical results are found to be in good agreement with those of direct numerical integrations.  相似文献   

17.
In this paper, dynamical behaviors for a competition and cooperation model of two enterprises with two delays are investigated. By choosing the diverse delay as a bifurcation parameter, we show that the complex Hopf bifurcation phenomenon at the positive equilibrium of the system can occur as the diverse delay crosses some critical values. Finally, some numerical simulations supporting our theoretical results and the economic meaning of the model are also presented.  相似文献   

18.
This paper reveals the?dynamical behaviors of a neural network consisting of a pair of bidirectional loops each with three identical neurons and two-way couplings between neurons of each individual loop. Time delays are introduced not only in the?couplings between the?loops but also in the?internal connections within the?individual loops. The study derives the?conditions for the?local stability of the?network equilibrium and the?existence of Hopf bifurcation. Afterwards, the?study turns to showing the?rich dynamical behaviors of the?network through numerical analysis, such as multiple stability switches of network equilibrium, synchronous/asynchronous periodic oscillations, and the?coexistence of bifurcated solutions.  相似文献   

19.
The effect of time delays occurring in a proportional-integral-derivative feedback controller on the linear stability of a simple electromechanical system is investigated by analyzing the characteristic transcendental equation. It is found that the trivial fixed point of the system can lose its stability through Hopf bifurcations when the time delay crosses certain critical values. Codimension two bifurcations, which result from non-resonant and resonant Hopf–Hopf bifurcation interactions, are also found to exist in the system.  相似文献   

20.
陈国泰  郑艳红  易丹  曾巧云 《力学学报》2022,54(10):2874-2882
研究大脑基底神经节中产生异常β振荡的起源有助于分析帕金森病的致病机理.本文系统地研究了改进的皮质-基底神经节(E-I-STN-GPe-GPi)共振模型的振荡动力学.首先,通过Routh-Hurwitz准则和稳定性理论获得了该模型局部平衡点处的稳定性与Hopf分岔发生的条件,并且推导出该共振模型存在Hopf分岔的时滞参数范围.研究发现,增加突触传输时滞能够使模型产生Hopf分岔,并且诱导β振荡的产生,使系统在健康和帕金森病这两个状态之间相互转换.其次,揭示了β振荡的产生与丘脑底核相关的突触连接强度有关.数值模拟发现,当丘脑底核同时受到兴奋性神经元集群和苍白球外侧较强的促进作用时,丘脑底核产生振荡.最后,分析了与苍白球内侧有关的参数对其产生振荡的影响,研究结果发现,当较小的苍白球外侧突触连接强度和较大的突触传输时滞共同作用时,苍白球内侧更容易发生振荡,且振幅越来越大.希望本文对E-I-STN-GPe-GPi共振模型的动力学特征的研究有助于人们理解帕金森病的致病机理和揭示帕金森病异常β振荡的来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号