首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three corroles, which differ by their cavity's core, namely, diamagnetic free-base tris(pentafluorophenyl)corrole and its gallium(III) complex and the paramagnetic oxo-chromium(V) complex, were studied by steady-state and time-resolved electron paramagnetic resonance (EPR) spectroscopy. The magnetic and orientational parameters of the corroles, oriented in a nematic liquid crystal, were determined and interpreted in terms of their structure, geometry, and excited states spin dynamics. It was shown that both diamagnetic corroles, photoexcited to their triplet states, exhibit similar EPR line shapes, which is characterized by a negative zero-field splitting parameter, D, whose origin is due to molecular "stretching". Photoexcited Cr(V)O-corrole exhibits polarized ground-state EPR spectrum in emission mode. This polarization stems from the sequence of photophysical and photochemical reactions, involving the formation of the trip-quartet/trip-doublet composite states and their selective quenching via a charge transfer state.  相似文献   

2.
In this study, we have investigated the singlet oxygen ((1)Delta(g)) generation mechanism using phthalocyaninatosilicon (SiPc) covalently linked to nitroxide radicals (NRs), and we succeeded in increasing the singlet oxygen quantum yield (Phi(Delta)) by linking the NRs. This originates from both an increase in the triplet quantum yield and excited-state lifetimes long enough to utilize photochemical reactions. Because the electron exchange interactions with paramagnetic species were known to result only in very fast excited-state relaxation, leading to a decrease in photochemical reaction yields, this increase in Phi(Delta) is an unusual and precious example for increasing photochemical reaction yields by electron exchange interactions with paramagnetic species. In addition, our experiments and theoretical analyses show that the spin-selective energy transfer rate constant is not influenced by linking the NRs and can be evaluated by the product of spin-statistical factors and matrix elements between the initial and final states.  相似文献   

3.
The photophysical properties of tetra-tert-butylphthalocyaninatosilicon (SiPc) covalently linked to one or two 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals (R1, R2) have been studied by fluorescence, transient absorption, and time-resolved electron paramagnetic resonance (TREPR) spectroscopies. It is found that the fluorescence quantum yields and lifetimes of R1 and R2 decrease compared with those of (dihydroxy)SiPc ((dihydroxy)SiPc = 6.8 ns, R1 = 4.7 ns and 42 ps, and R2 = 4.7 ns and <30 ps). Transient absorption measurements indicate that the lifetime of the excited triplet SiPc is markedly dependent on the number of linking TEMPO radicals ((dihydroxy)SiPc = 500 micros, R1 = 7.6 micros, and R2 = 3.7 micros). These short lifetimes of R1 and R2 in the excited states are explained as a result of the interaction with TEMPO changing the ISC between the singlet and triplet states to spin-allowed transitions. Quantitative TREPR investigations have been carried out for the radical-quartet pair mechanism of R1 and the photoinduced population transfer of R2. It is determined that the rise and decay times of these electron spin polarizations denote the spin-lattice relaxation time of the ground state and the lifetime of the excited multiplet state, respectively. This study contributes not only to an elucidation of radical-chromophore interactions but also to a novel approach for controlling magnetic properties by photoexcitation.  相似文献   

4.
Time-resolved magnetic resonance experiments (TREPR and CIDNP) are used to investigate previously unobserved redox chemistry of the surfactant dioctyl sulfosuccinate ester (AOT) using the photoexcited triplet state of anthraquinone 2,6-disulfonate (3AQDS*). Several different free radicals resulting from two independent oxidation pathways (electron transfer and hydrogen abstraction) are observed. These include the radical ions of AQDS and sulfite from electron-transfer processes, carbon-centered radicals from H-atom abstraction reactions, and an additional carbon-centered radical formed by electron transfer from the AOT sulfonate head group followed by the loss of SO3. The radicals exhibit intense chemically induced dynamic electron spin polarization (CIDEP) in their TREPR spectra. The intensity ratios of the observed TREPR signals for each radical depend on the water pool size and temperature, which in turn affect the predominant CIDEP mechanism. All signal carriers are accounted for by simulation, and CIDNP results provide strong supporting evidence for the assignments.  相似文献   

5.
Abstract— Steady-state and time-resolved electron paramagnetic resonance (TREPR) experiments are described. Comparison of the TREPR continuous wave method to other time domain EPR techniques such as Fourier transform EPR (FT-EPR) is made, and the advantages and disadvantages of each are presented. The role played by several mechanisms of chemically induced dynamic electron spin polarization (CIDEP) in the appearance of the spectra is explained. The advantages of using higher frequency spectrometers than the standard X-band (9.5 GHz) are presented and discussed. Examples are presented that are relevant to organic photochemistry and electron donor-acceptor chemistry. The use of TREPR to study polymer photodegradation, polymer chain dynamics, free radical initiator chemistry and biradical spin exchange interactions is described. Emphasis is placed on magnetic field effects studied by multiple frequency TREPR in these systems. Finally, several future directions in the field are discussed in terms of new developments in microwave and magnetic field technology.  相似文献   

6.
Abstract— Photoionization of the amino acid tyrosine in basic water was studied by time-resolved electron paramagnetic resonance (TREPR) at X-band (9.5 GHz). Photoionization of deprotonated tyrosine leads to a spin-polarized emissive/absorptive chemically induced dynamic electron polarization (CIDEP) spectrum produced by the radical pair mechanism, with the tyrosyl radical in emission and the solvated electron in absorption, which implies a triplet precursor. The exchange interaction, J, is found to be negative for this radical pair. The triplet photoionization channel is determined to be monophotonic. The singlet channel of photoionization of deprotonated tyrosine is seen only upon addition of the electron acceptor 2-bro-mo-2-methylpropionic acid (BMPA) to the sample. The singlet channel is isolated by performing TREPR on a sample containing tyrosine, BMPA and a triplet quencher (2,4-hexadienoic acid). This channel is also found to be monophotonic.  相似文献   

7.
In this overview, modern multifrequency EPR spectroscopy, in particular at high magnetic fields, is shown to provide detailed information about structure, motional dynamics, and spin chemistry of transient radicals and radical pairs occurring in photochemical reactions. Examples discussed comprise photochemical reactions in liquid solution and light‐initiated electron transfer processes both in biomimetic donor–acceptor model systems in frozen solution or liquid crystals and in natural photosynthetic‐reaction‐center protein complexes. The transient paramagnetic states exhibit characteristic electron polarization (CIDEP) effects. They contain valuable information about structure and dynamics of the transient reaction intermediates. Moreover, they are exploited for signal enhancement. Continuous‐wave (cw) and pulsed versions of time‐resolved high‐field EPR spectroscopy, such as cw‐transient‐EPR (TREPR) and pulsed‐electron‐spin‐echo (ESE) experiments, are compared with respect to their advantages and limitations for the specific system under study. For example, W‐band (95‐GHz) TREPR spectroscopy in conjunction with a continuous‐flow system for light‐generated short‐lived transient spin‐polarized radicals of organic photoinitiators in solution was performed with a time resolution of 10 ns. The increased Boltzmann polarization at high fields even allows detection of transient radicals without CIDEP effects. This enables one to determine initial radical polarization contributions as well as radical‐addition reaction constants. Another example of the power of combined X‐band and W‐band TREPR spectroscopy is given for the complex electron‐transfer and spin dynamics of covalently linked porphyrin–quinone as well as Watson–Crick base‐paired porphyrin–dinitrobenzene donor–acceptor biomimetic model systems. Furthermore, W‐band ESE experiments on the spin‐correlated coupled radical pair in reaction centers of the purple photosynthetic bacterium Rb. sphaeroides reveal details of distance and orientation of the pair partners in their charge‐separated transient state. The results are compared with those of the ground‐state P865QA. The high orientation selectivity of high‐field EPR provides single‐crystal‐like information even from disordered frozen‐solution samples. The examples given demonstrate that high‐field EPR adds substantially to the capability of ‘classical’ spectroscopic and diffraction techniques for determining structure–dynamics–function relations of biochemical systems, since transient intermediates can be observed in real time in their working states on biologically relevant time scales.  相似文献   

8.
Anthracene-naphthalimide (An-NI) compact electron donor-acceptor dyads were prepared, in which the orientation and distance between the two subunits were varied by direct connection or with intervening phenyl linker. Efficient intersystem crossing (ISC) and long triplet state lifetime (ΦΔ=92 %, τT=438 μs) were observed for the directly connected dyads showing a perpendicular geometry (81°). This efficient spin-orbit charge transfer ISC (SOCT-ISC) takes 376 fs, inhibits the direct charge recombination (CR) to ground state (1CT→S0, takes 3.04 ns). Interestingly, efficient SOCT-ISC for dyads with intervening phenyl linker (ΦΔ=40 % in DCM) was also observed, although the electron donor and acceptor adopt almost coplanar geometry (dihedral angle: 15°). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy shows that the electron spin polarization of the triplet state, i. e. the electron spin selectivity of ISC, is highly dependent on the dihedral angle and the linker. For the dyads showing weaker coupling between the donor and acceptors, the charge separation and the intramolecular triplet energy transfer are inhibited at 80 K (frozen solution), because both the 3An and 3NI states were observed and the ESP are same as compared to the native anthracene and naphthalimide, which unravel their origin. The dyads were used as triplet photosensitizers for triplet−triplet annihilation upconversion (TTA UC). High UC quantum yield (ΦUC=12.9 %) as well as a large anti-Stokes shift (0.72 eV) was attained by excitation into the CT absorption band.  相似文献   

9.
The 2,2,2-trifluoroethoxycarbonyl radical, 3b, has been generated by pulsed irradiation of 9-fluorenone oxime 2,2,2-trifluoroethyl oxalate 1b in carbon tetrachloride and acetonitrile solution. It was characterized by time-resolved electron paramagnetic resonance spectroscopy (EPR) and infrared spectroscopy. The radical has a lifetime in the range of microseconds and can be detected within the rise time of our time-resolved equipment before undergoing recombination or reactions with the solvent. No decarbonylation or decarboxylation was observed. In the presence of oxygen, the radical is quenched to yield the 2,2,2-trifluoroethoxycarbonylperoxy radical 4b, which has again a lifetime in the range of several microseconds. Time-resolved electron paramagnetic resonance spectroscopy (TREPR) allowed for the detection of a 1 : 1 : 1 triplet of the fluorene-9-iminyl radical 7 at g = 2.0032 and a 1 : 3 : 3 : 1 quartet with additional hyperfine splitting (HFS) due to proton coupling at g = 2.001 for the trifluoroethoxycarbonyl radical 3b. Calculations indicate that alkoxycarbonyl radicals can exist in conformations that are s-trans or s-cis with respect to the R-O-C(O) x dihedral. A comparison of experimental TREPR spectra with simulations indicates that the s-trans conformer is observed in the case of the ethoxycarbonyl radical, 3a. In the case of the trifluorethoxycarbonyl radical, 3b, however, the additional proton HFS observed shows that it is the s-cis conformer that is formed. As calculations give evidence for a fairly high activation enthalpy for s-cis-s-trans interconversion of alkoxycarbonyl radicals, this discrepancy is likely due to differing conformational preferences of the precursor molecules.  相似文献   

10.
The first observation of a spin polarized excited state of a paramagnetic metal-complex using time-resolved electron paramagnetic resonance (TREPR) spectroscopy is reported for octaethylporphinatooxovanadium(iv). The TREPR spectra show well resolved orientation dependent hyperfine splitting to the I = 7/2 vanadium nucleus. The reduction of the hyperfine splitting by a factor of 3 compared to the ground state and the observation of a multiplet pattern of spin polarization allow the TREPR spectra to be assigned to the excited quartet state of the complex. The spin polarization patterns evolve with time and it is postulated that this is a result of the equilibration between the lowest excited quartet and doublet states.  相似文献   

11.
A series of photoinduced H-atom abstraction reactions between anthraquinone-2,6,-disulfonate, disodium salt (AQDS) and differently charged micellar substrates is presented. After a 248 nm excimer laser flash, the first excited triplet state of AQDS is rapidly formed and then quenched by abstraction of a hydrogen atom from the alkyl chain of the micelle surfactant, leading to a spin-correlated radical pair (SCRP). The SCRP is detected 500 ns after the laser flash using time-resolved (direct detection) electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz). By changing the charge on the surfactant headgroup from negative (sodium dodecyl sulfate, SDS) to positive (dodecyltrimethylammonium chloride, DTAC), TREPR spectra with different degrees of antiphase structure (APS) in their line shape were observed. The first derivative-like APS line shape is the signature of an SCRP experiencing an electron spin exchange interaction between the radical centers, which was clearly observable in DTAC micelles and absent in SDS micellar solutions. Solutions with surfactant concentrations well below the critical micelle concentration (cmc) or solutions where micellar formation had been disrupted (1:1 v/v CH(3)CN/H(2)O) also showed no APS line shapes in their TREPR spectra. These results support the conclusion that electrostatic forces between the sensitizer (AQDS) charge and the substrate (surfactant) headgroup charge are responsible for the observed effects. The results represent a new example of electrostatic control of a spin exchange interaction in mobile radical pairs.  相似文献   

12.
Abstract— Ultraviolet irradiation of photosensitive molecules like phenothiazine derivatives leads to the formation of short lived free radicals which are able to reduce stable nitroxide free radicals generally used as spin labels. The measurement of the electron spin resonance signal decay of nitroxides offers a tool for studying the photochemical reaction of phenothiazine derivatives in solution at room temperature, in a 10-5 to 10-2 M concentration range. Analysis of the reaction mechanism shows that the paramagnetic nitroxide is an efficient quencher of the phenothiazine triplet state; this reaction was used to demonstrate the influence of the solvent, quenching by oxygen and the role of the chemical structure of six phenothiazine derivatives on their photoreactivity in solution.  相似文献   

13.
Pentachlorophenol, a widespread environmental pollutant that is possibly carcinogenic to humans, is metabolically oxidized to tetrachloroquinone (TCBQ) which can result in DNA damage. We have investigated the photochemical reaction dynamics of TCBQ with two pyrimidine type nucleobases (thymine and uracil) upon UVA (355 nm) excitation using the technique of nanosecond time-resolved laser flash photolysis. It has been found that 355 nm excitation populates TCBQ molecules to their triplet state 3TCBQ*, which are highly reactive towards thymine or uracil and undergo two parallel reactions, the hydrogen abstraction and electron transfer, leading to the observed photoproducts of TCBQH· and TCBQ·- in transient absorption spectra. The concomitantly produced nucleobase radicals and radical cations are expected to induce a series of oxidative or strand cleavage damage to DNA afterwards. By characterizing the photochemical hydrogen abstraction and electron transfer reactions, our results provide potentially important molecular reaction mechanisms for understanding the carcinogenic effects of pentachlorophenol and its metabolites TCBQ.  相似文献   

14.
The reactions of carbon centered radical pairs often involve diffusion controlled combination and/or disproportionation reactions which are non-selective. A triplet geminate pair of radicals is produced by the photolysis of suitable ketones. The reactions of such geminate pairs can be controlled though the application of supramolecular concepts which emphasize non-covalent interaction to "steer" the geminate pair toward a selected pathway. In addition, "superdupermolecular" concepts, which emphasize the control of radical pair reactions through the orientation of electron spins, can be employed to further control the course of geminate pair reactions. Examples of control of a range of the selectivity of geminate radical combinations, which form strong covalent bonds, through supramolecular and superdupermolecular effects will be presented for the photolysis of ketones adsorbed in the supercages of zeolites.  相似文献   

15.
Photoinduced, proton-coupled electron transfer (ET) between 9,10-anthraquinone-2,6-disulfonate (ADQS) and an amino acid residue of tryptophan in human serum albumin (HSA) was observed using time-resolved electron paramagnetic resonance (TREPR). The ET reaction reduces the protein binding affinity of the ligand. TREPR chemically induced dynamic electron polarization (CIDEP) spectra establish that photoinduced ET takes place from the tryptophan residue (W214) to the excited triplet state of AQDS2- while bound in subdomain IIA, a protein cleft of HSA. The TREPR CIDEP signals also reveal that the anion radical of the ligand escapes toward the bulk water region by a one-dimensional translation diffusion process within the protein's pocket area. This pilot study of HSA demonstrates how TREPR CIDEP can provide significant means to investigate dynamic characteristics of protein-surface reactions.  相似文献   

16.
In protein-cofactor reaction center (RC) complexes of purple photosynthetic bacteria, the major role of the bound carotenoid (C) is to quench the triplet state formed on the primary electron donor (P) before its sensitization of the excited singlet state of molecular oxygen from its ground triplet state. This triplet energy is transferred from P to C via the bacteriochlorophyll monomer B(B). Using time-resolved electron paramagnetic resonance (TREPR), we have examined the temperature dependence of the rates of this triplet energy transfer reaction in the RC of three wild-type species of purple nonsulfur bacteria. Species-specific differences in the rate of transfer were observed. Wild-type Rhodobacter capsulatus RCs were less efficient at the triplet transfer reaction than Rhodobacter sphaeroides RCs, but were more efficient than Rhodospirillum rubrum RCs. In addition, RCs from three mutant strains of R. capsulatus carrying substitutions of amino acids near P and B(B) were examined. Two of the mutant RCs showed decreased triplet transfer rates compared with wild-type RCs, whereas one of the mutant RCs demonstrated a slight increase in triplet transfer rate at low temperatures. The results show that site-specific changes within the RC of R. capsulatus can mimic interspecies differences in the rates of triplet energy transfer. This application of TREPR was instrumental in defining critical energetic and coupling factors that dictate the efficiency of this photoprotective process.  相似文献   

17.
Abstract— The photochemical reactions of benzophenone and acetophenone with purine and pyrimidine derivatives in aqueous solutions have been investigated by flash photolysis and steady-state experiments. Upon excitation of these two ketones in aqueous solutions, two transient species are observed: molecules in their triplet state and ketyl radicals. The triplet state lifetimes are 65 μsec for benzophenone and 125 μsec for acetophenone. The ketyl radicals disappear by a second order reaction, controlled by diffusion. In the presence of pyrimidine derivatives, the triplet state is quenched and the ketyl radical concentration is decreased without any change in its kinetics of disappearance. Ketone molecules in their triplet state react with purine derivatives leading to an increase in the yield of ketyl radicals due to H-atom abstraction from the purines. Steady-state experiments show that benzophenone and acetophenone irradiated in aqueous solution at wavelengths longer than 290 nm undergo photochemical reactions. The rate of these photochemical reactions is increased in the presence of pyrimidine derivatives and even more in the presence of purine derivatives. Following energy transfer from the triplet state of benzophenone to diketopyrimidines, cyclobutane dimers are formed. The energy transfer rate decreases in the order orotic acid > thymine > uracil. Benzophenone molecules in their triplet state can also react chemically with pyrimidine derivatives to give addition photoproducts. All these results are discussed with respect to photosensitized reactions in nucleic acids involving ketones as sensitizers.  相似文献   

18.
A series of DNA hairpins (AqGn) possessing a tethered anthraquinone (Aq) end-capping group were synthesized in which the distance between the Aq and a guanine-cytosine (G-C) base pair was systematically varied by changing the number (n - 1) of adenine-thymine (A-T) base pairs between them. The photophysics and photochemistry of these hairpins were investigated using nanosecond transient absorption and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. Upon photoexcitation, (1*)Aq undergoes rapid intersystem crossing to yield (3*)Aq, which is capable of oxidizing purine nucleobases resulting in the formation of (3)(Aq(-?)Gn(+?)). All (3)(Aq(-?)Gn(+?)) radical ion pairs exhibit asymmetric TREPR spectra with an electron spin polarization phase pattern of absorption and enhanced emission (A/E) due to their different triplet spin sublevel populations, which are derived from the corresponding non-Boltzmann spin sublevel populations of the (3*)Aq precursor. The TREPR spectra of the (3)(Aq(-?)Gn(+?)) radical ion pairs depend strongly on their spin-spin dipolar interaction and weakly on their spin-spin exchange coupling. The anisotropy of (3)(Aq(-?)Gn(+?)) makes it possible to determine that the π systems of Aq(-?) and G(+?) within the radical ion pair are parallel to one another. Charge recombination of the long-lived (3)(Aq(-?)Gn(+?)) radical ion pair displays an unusual bimodal distance dependence that results from a change in the rate-determining step for charge recombination from radical pair intersystem crossing for n < 4 to coherent superexchange for n > 4.  相似文献   

19.
Melanin, a ubiquitous, heterogeneous biological polymer composed of many different monomers, contains a population of stationary, intrinsic semiquinone-like radicals. Additional extrinsic semiquinone-like radicals are reversibly photogenerated with visible or UV irradiation. The free radical chemistry of melanin is complex and not well characterized, especially the photochemistry of melanin in the presence of oxygen. To determine directly how melanin reacts in the presence of oxygen, time-resolved electron paramagnetic resonance (TREPR) spectroscopy was used to examine melanin free radical chemistry in human retinal pigment epithelium (RPE) cells under aerobic and anaerobic conditions. A TREPR difference spectrum was used to explore the nature of melanin chemistry in the presence of oxygen. The position and symmetrical line shape of the TREPR three-dimensional difference spectrum shows that when reactive oxygen species (ROS) are scavenged, only one of the two or more chemically different melanin free radical species participates in ROS scavenging. This protective melanin radical species exists in both the extrinsic and intrinsic populations of melanin free radicals, allowing melanin to protect the RPE from toxic species in both the light and dark.  相似文献   

20.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号