首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this paper, a robust fractional-order adaptive intelligent controller is proposed for stabilization of uncertain fractional-order chaotic systems. The intelligent neuro-fuzzy network is used to estimate unknown dynamics of system, while the neuro-fuzzy network parameters as well as the upper bounds of the model uncertainties, disturbances and approximation errors are adaptively estimated via separate adaptive rules. An SMC scheme, with a fractional-order sliding surface, is employed, as the controller to improve the velocity and performance of the proposed control system and to eliminate the unknown but bounded uncertainties, external disturbances and approximation errors. The Lyapunov stability theorem has been also employed to show the stability of the closed-loop system, robustness against uncertainties, external disturbances and approximation errors, while the control signal remains bounded. Explanatory examples and simulation results are given to confirm the effectiveness of the proposed procedure, which consent well with the analytical results.  相似文献   

2.
The main goal of this paper is to propose the adaptive nonsingular terminal sliding mode controllers for complete synchronization (CS) and anti-synchronization (AS) between two identical ?? 6 Van der Pol or Duffing oscillators with presentations of system uncertainties and external disturbances. Unlike directly eliminating the nonlinear items of synchronized error system for sliding mode control schemes in the literature, the proposed adaptive controllers can tackle the nonlinear dynamics without active cancellation. The controllers can be implemented without known bounds of system uncertainties and external disturbances. Meanwhile, the feedback gains are not determined in advance but updated by the adaptive rules. Sufficient conditions are given based on the Lyapunov stability theorem and numerical simulations are performed to verify the effectiveness of presented schemes. The results show that the chaotic synchronization can be achieved accurately by the chattering free control.  相似文献   

3.
This paper proposes a discrete-time neuro-sliding mode control (NSMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time-delay systems. It is shown that the proposed scheme guarantees the stability of closed-loop system and achieves zero-tracking error in the presence of state delays, input delays, parameter uncertainties, and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme not only assures robustness against time-delays, system uncertainties and disturbances, but also avoids chattering phenomenon and reaching phase. Moreover, the knowledge of upper bound of uncertainties is not required. Both the theoretical analysis and illustrative example demonstrate the validity of the proposed scheme.  相似文献   

4.
In this paper, a generalized control scheme for the class of nonlinear multiple-input multiple-output (MIMO) uncertain system with cross-coupling and nonlinearity in their input channels under the influence of external disturbances is presented. This is accomplished using full-order model following sliding mode control based on uncertainty and disturbance estimator (UDE) technique. The fourth-order uncertain nonlinear MIMO system is separated into multiple single-input single-output double integrator subsystems by considering the effect of input coupling and nonlinearity as a disturbance. The UDE is designed to estimate the plant uncertainties as well as external disturbances without the knowledge of the bounds on the uncertainties. The proposed method decouples the system and overcomes the problem of high initial control which ultimately eliminates the reaching phase and the chattering phenomenon which is generally occurred in sliding mode control. The effectiveness of the proposed control scheme is demonstrated through numerical simulation of two-link manipulator.  相似文献   

5.
In this paper, a robust synchronization control scheme is proposed for chaotic systems in the presence of system uncertainties and unknown external disturbances. For the synchronization error system, the compound disturbance which is estimated using the disturbance observer cannot be directly measured. If the gain matrix is properly chosen, the disturbance observer can approximate the unknown compound disturbance well. And then, the constrained robust synchronization control scheme is presented for uncertain chaotic systems based on the output of disturbance observer. In the design of a robust synchronization control scheme, the effect of unknown control input constraint has been explicitly considered to guarantee the synchronization performance. Numerical simulation results are presented to illustrate the effectiveness of the proposed constrained synchronization control scheme for uncertain chaotic systems.  相似文献   

6.
This paper studies the robust adaptive full state hybrid projective synchronization (FSHPS) scheme for a class of chaotic complex systems with uncertain parameters and external disturbances. By introducing a compensator and using nonlinear control and adaptive control, the robust adaptive FSHPS scheme is derived, which can eliminate the influence of uncertainties effectively and achieve adaptive FSHPS of the chaotic (hyperchaotic) complex systems asymptotically with a small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions of realizing FSHPS are derived as well. Moreover, we also discuss the case that parameters of chaotic complex system are complex. Finally, the complex Chen system and Lü system, and the hyperchaotic complex Lorenz system are taken as two examples and the numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

7.
An integrated guidance and control system has been developed to enable underactuated marine surface vessels to operate autonomously and yield robust tracking performance in spite of significant external disturbances and modeling imprecision. A nonlinear ship model, accounting for all six degrees-of-freedom of the ship, has been used as a test bed to assess the performance of the proposed scheme. The controller combines the advantages of the variable structure systems (VSS) theory with the self-tuning fuzzy logic scheme. It does not require an accurate dynamic model of the ship or the construction of a rule-based expert system. Its asymptotic stability is ensured by knowing the upper bounds on modeling imprecision and external disturbances and by forcing the tuning parameters to satisfy the sliding conditions. The guidance system is based on the concepts of the variable radius line-of-sight (LOS) and the acceptance circle around the waypoints. The current system varies the LOS radius exponentially with the cross track error in order to achieve a fast convergence rate of the ship to its desired trajectory. The simulation results demonstrate the robust tracking characteristic of the integrated guidance and control system in spite of significant modeling uncertainties and environmental disturbances.  相似文献   

8.
AIRSHIP ATTITUDE TRACKING SYSTEM   总被引:6,自引:0,他引:6  
The attitude tracking control problem for an airship with parameter uncertainties and external disturbances was considered in this paper. The mathematical model of the airship attitude is a multi-input/multi-output uncertain nonlinear system. Based on the characteristics of this system, a design method of robust output tracking controllers was adopted based on the upper-bounds of the uncertainties. Using the input/output feedback linearization approach and Liapunov method, a control law was designed, which guarantees that the system output exponentially tracks the given desired output. The controller is easy to compute and complement. Simulation results show that, in the closed-loop system, precise attitude control is accomplished in spite of the uncertainties and external disturbances in the system.  相似文献   

9.
Adaptive sliding mode control of dynamic system using RBF neural network   总被引:1,自引:0,他引:1  
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.  相似文献   

10.
In this paper, an adaptive fuzzy sliding mode control (AFSMC) for Micro-Electro-Mechanical Systems (MEMS) triaxial gyroscope is proposed. First, a novel adaptive identification approach with sliding mode controller which can identify angular velocity and other system parameters is developed. And in order to reduce the chattering, an AFSMC is designed to approximate the upper bound of the uncertainties and external disturbances. Based on Lyapunov methods, these adaptive laws can guarantee that the system is asymptotically stable. Numerical simulations are investigated to verify the effectiveness of the proposed AFSMC scheme.  相似文献   

11.
Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

12.
In this paper, a novel fractional-order terminal sliding mode control approach is introduced to control/synchronize chaos of fractional-order nonautonomous chaotic/hyperchaotic systems in a given finite time. The effects of model uncertainties and external disturbances are fully taken into account. First, a novel fractional nonsingular terminal sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then an appropriate robust fractional sliding mode control law is proposed to ensure the occurrence of the sliding motion in a given finite time. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. The proposed control scheme is applied to control/synchronize chaos of autonomous/nonautonomous fractional-order chaotic/hyperchaotic systems in the presence of both model uncertainties and external disturbances. Two illustrative examples are presented to show the efficiency and applicability of the proposed finite-time control strategy. It is worth to notice that the proposed fractional nonsingular terminal sliding mode control approach can be applied to control a broad range of nonlinear autonomous/nonautonomous fractional-order dynamical systems in finite time.  相似文献   

13.
Unlike taking the same external electrical stimulation to discuss chaotic synchronization in the literature, the synchronization between two uncouple FitzHugh?CNagumo (FHN) neurons with different ionic currents and external electrical stimulations is considered. The main contribution of this study is the application of a robust adaptive sliding-mode controller instead of the active elimination. The proposed sliding mode controller associated with time varying feedback gains cannot only tackle the system uncertainties and external disturbances, but also compensate for the mismatch nonlinear dynamics of synchronized error system without direct cancellation. Meanwhile, these feedback gains are not determined in advance but updated by the adaptive laws. Sufficient conditions to guarantee the stable synchronization are given in the sense of the Lyapunov stability theorem. In addition, numerical simulations are also performed to verify the effectiveness of presented scheme.  相似文献   

14.
Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos.In this paper,the problem of robust stabi...  相似文献   

15.
In this paper, a fuzzy adaptive output feedback control scheme based on fuzzy adaptive observer is proposed to control robotic systems with parameter uncertainties and external disturbances. It is supposed that only the joint positions of the robotic system can be measured, whereas the joint velocities are unknown and unmeasured. First, a fuzzy adaptive nonlinear observer is presented to estimate the joint velocities of robotic systems, and the observation errors are analyzed using strictly positive real approach and Lyapunov stability theory. Next, based on the observed joint velocities, a fuzzy adaptive output feedback controller is developed to guarantee stability of closed-loop system and achieve a certain tracking performance. Based on the Lyapunov stability theorem, it is proved that all the signals in closed-loop system are bounded. Finally, simulation examples on a two-link robotic manipulator are presented to show the efficiency of the proposed method.  相似文献   

16.
Hua  Chang-Chun  Wang  Kai  Chen  Jian-Nan  You  Xiu 《Nonlinear dynamics》2018,94(1):343-354
Nonlinear Dynamics - The attitude control problem is addressed for a quadrotor system subject to the modeling uncertainties and unknown disturbances. A novel attitude control scheme is proposed...  相似文献   

17.
With the demand for energy efficiency in electrohydraulic servo systems (EHSS), the separate meter-in and separate meter-out (SMISMO) control system draws massive attention. In this paper, the SMISMO control system is decoupled completely into two subsystems by the proposed indirect adaptive robust dynamic surface control (IARDSC) method. Indirect adaptive robust control (IARC) is proposed to address the internal parameter uncertainties and external disturbances. Dynamic surface control (DSC) is utilized in the design procedure of IARC to deal with the inherent ‘explosion of terms’ problem. The proposed IARDSC simplifies the design procedure and decreases the computational cost of the controller. Besides, a faster parameter estimation scheme is proposed to adapt to the parameter change for a better estimation performance. Finally, experimental results show that the proposed IARDSC can achieve a good parameter estimation and trajectory tracking performance. Meanwhile, two energy saving techniques are discussed.  相似文献   

18.
This paper studies the attitude synchronization control problem for a group of spacecraft. Considering inertia uncertainties and external disturbances with unknown bounds, a decentralized adaptive control scheme is developed using nonsingular fast terminal sliding mode (NFTSM). A multispacecraft NFTSM is firstly designed, which contains the advantages of the nonsingular terminal sliding mode and the traditional linear sliding mode together. Then, the continuous decentralized adaptive NFTSM control laws with boundary layer by employing NFTSM associated with novel adaptive architecture are proposed, which can eliminate the chattering, and guarantee the attitude tracking errors converge to the regions containing the origin in finite time. At last, numerical simulations are presented to demonstrate the performance of the proposed control strategy.  相似文献   

19.
Yang  Yikun  Yang  Bintang  Niu  Muqing 《Nonlinear dynamics》2018,93(3):1109-1120
An adaptive dynamic surface control (DSC) scheme is proposed for the multi-input multi-output attitude control of near-space hypersonic vehicles (NHV). The proposed control strategy can improve the control performance of NHV despite uncertainties and external disturbances. The proposed controller combines dynamic surface control and radial basis function neural network (RBFNN) and is designed to control the longitudinal dynamics of NHV. The DSC technique is used to handle the problem of “explosion of complexity” inherent to the conventional backstepping method. RBFNN is used to approximate the unknown nonlinear function, and a robustness component is introduced in the controller to cancel the influence of compound disturbance and improve robustness and adaptation of the system. Simulation results show that the proposed strategy possesses good robustness and fast response.  相似文献   

20.
This paper is concerned with the problem of design and implementation of a robust adaptive control strategy for electrically driven robots while considering to the constraints on the actuator voltage input. The proposed approach provides a flexible design framework and stable to deal with robustness compared with many other adaptive controllers, such as halting/slowing adaption techniques and adaptively adjusting command signal, which are proposed for robotic applications. The control design procedure is based on a new form of universal approximation theory and using Stone–Weierstrass theorem, to avoid saturation besides being robust against both structured and unstructured uncertainties associated with external disturbances and actuated manipulator dynamics. Moreover, the proposed approach eliminates problems arising from classic adaptive feedforward control scheme. The analytical studies as well as experimental results produced using MATLAB/SIMULINK external mode control on a two degree of freedom electrically driven robot demonstrate high performance of the proposed control schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号