首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we review the physical characteristics of quantum cascade transitions (QCTs) in various nanoscopic systems. The quantum cascade laser which utilizes such transitions in quantum wells is a brilliant outcome of quantum engineering that has already demonstrated its usefulness in various real-world applications. After a brief introduction to the background of this transition process, we discuss the physics behind these transitions in an externally applied magnetic field. This has unravelled many intricate phenomena related to intersubband resonance and electron relaxation modes in these systems. We then discuss QCTs in a situation where the quantum wells in the active regions of a quantum cascade structure are replaced by quantum dots. The physics of quantum dots is a rapidly developing field with its roots in fundamental quantum mechanics, but at the same time, quantum dots have tremendous potential applications. We first present a brief review of those aspects of quantum dots that are likely to be reflected in a quantum-dot cascade structure. We then go on to demonstrate how the calculated emission peaks of a quantum-dot cascade structure with or without an external magnetic field are correlated with the properties of quantum dots, such as the choice of confinement potentials, shape, size and the low-lying energy spectra of the dots. Contents PAGE 1 Introduction 456 2 Intersubband transitions in quantum wells 458 3 Quantum cascade transitions 462 3.1. Basic principles 462 3.1.1. Minibands and minigaps 464 3.1.2. Vertical transitions 464 3.1.3. GaAs/AlGaAs quantum cascade lasers 464 3.1.4. QCLs based on superlattice structures 465 3.1.5. Type-II quantum cascade lasers 466 3.1.6. Recent developments 466 3.2. Applications: sense-ability and other qualities 466 4 Quantum cascade transitions in novel situations 467 4.1. External magnetic field 467 4.1.1. Parallel magnetic field 468 4.1.2. Many-body effects: depolarization shift 470 4.1.3. The role of disorder 471 4.1.4. Tilted magnetic field 475 4.2. Magneto-transport experiments and phonon relaxation 479 4.3. Magneto-optics experiment and phonon relaxation 484 5 A brief review of quantum dots 485 5.1. From three- to zero-dimensional systems 485 5.2. Making the dots 487 5.2.1. Lithographic patterning 487 5.2.2. Self-assembled quantum dots 488 5.3. Shell filling in quantum dots 489 5.4. Electron correlations: spin states 490 5.5. Anisotropic dots 491 5.6. Influence of an external magnetic field 491 5.6.1. The Fock diagram 491 5.6.2. The no-correlation theorem 492 5.6.3. Correlation effects and magic numbers 492 5.6.4. Spin transitions 493 5.7. Quantum dots in novel systems 494 5.8. Potential applications of quantum dots 494 5.8.1. Single-electron transistors (SETs) 494 5.8.2. Single-photon detectors 494 5.8.3. Single-photon emitters 495 5.8.4. Quantum-dot lasers 495 6 Quantum cascade transitions in quantum-dot structures 496 6.1. Quantum dots versus quantum wells 496 6.2. QCT with rectangular dots 497 6.2.1. Vertical transitions 500 6.2.2. Diagonal transitions 501 6.3. QCT in a parabolic dot 504 6.4. Magnetic field effects on intersubband transitions 506 6.5. Mid-IR luminescence from a QD cascade device 512 7 Summary and open questions 513 Acknowledgements 515 References 515  相似文献   

2.
We observed the tunneling process of photo-excited holes in neutral InP quantum dots and Pauli blocking of charged InP quantum dots. A highly sensitive heterodyne-detected photon echo method enabled us to observe the signal from one layer of self-assembled InP quantum dots under the electric field. The electric field could control the charging or neutralization of the InP quantum dots and hence the photon echo signal decreased considerably with the increase of electron doping. The photon echo of neutral InP quantum dots under the electric field showed tunneling-induced dephasing, which decays non-exponentially reflecting the non-Markovian nature of the tunneling process.  相似文献   

3.
Toxicity of nanoparticles remains to be a major issue in their application to the biomedical field. Aloe vera(AV) is one of the most widely exploited medicinal plants that have a multitude of amazing properties in the field of medicine.Methanol extract of Aloe vera can be used as a novel stabilising agent for quantum dots to reduce toxicity. We report the synthesis, structural characterization, antibacterial activity and cytotoxicity studies of ZnS:Mn quantum dots synthesized by the colloidal precipitation method, using methanol extract of Aloe vera(AVME) as the capping agent. The ZnS:Mn quantum dots capped with AVME exhibit superior performances in biocompatibility and antibacterial activity compared with ZnS:Mn quantum dots without encapsulation.  相似文献   

4.
Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method.When the quantum dots are completely aligned,the electron energy levels decrease with the horizontally applied electric field.However,energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field.In addition to shifting the energy levels,the electric field can also manipulate the electron wavefunctions confined in the quantum dots,in company with the non-perfect alignment.  相似文献   

5.
Controllable interactions that couple quantum dots are a key requirement in the search for scalable solid state implementations for quantum information technology. From optical studies of excitons and corresponding calculations, we demonstrate that an electric field on vertically coupled pairs of In(0.6)Ga(0.4)As/GaAs quantum dots controls the mixing of the exciton states on the two dots and also provides controllable coupling between carriers in the dots.  相似文献   

6.
刘玉敏  俞重远  杨红波  黄永箴 《物理学报》2006,55(10):5023-5029
对量子点超晶格材料中量子点纵向周期和同层量子点的横向周期间距对量子点及其周围应变场分布的影响进行了系统的研究.结果表明,横向和纵向周期通过衬底材料之间的长程相互作用对量子点沿中心轴路径应变分布的影响效果正好相反,在适当条件下,两者对量子点应变场分布的影响可以部分抵消.同时也论证了在单层量子点和超晶格量子点材料中,计算量子点的电子结构时,应综合考虑量子点空间周期分布对载流子限制势的影响,不能简单的利用孤立量子点模型来代替. 关键词: 应变 半导体量子点 自组织  相似文献   

7.
李红博  尹坤 《中国光学》2017,10(5):555-567
近年来,量子点在结构可控、光谱调节和光学稳定方面的研究进展,表明基于量子点的聚光器件表现出优于基于传统有机染料分子的光输出性能。量子点聚光器成为目前量子点研究领域的新方向。量子点在宏量制备和绿色制备方面的深入研究,使得量子点的制造成本逐步降低,基于量子点的聚光器具有光电转换效率和成本上的优势。本文综述了量子点聚光器的研究进展,主要包括荧光型聚光器的优点、聚光器对量子点光学性质的要求、器件制备的工艺和器件的性能表征方法。重点阐述了量子点的太阳光吸收能力、荧光量子产率和重吸收等关键因素对聚光器件性能的影响,同时介绍了该领域目前最新的研究方向,展望了廉价太阳能窗户在未来城镇建筑上的潜在应用。  相似文献   

8.
The effects of both nanocrystal shape and applied magnetic field on the electron energy spectra of colloidal ZnO quantum dots have been investigated in the frame of finite element method, using nonuniform triangular elements. Four shapes of quantum dots (spherical, ellipsoidal, rod-shaped, and lens-shaped) were studied. It was found that the physical properties of the semiconductor quantum dots could be manipulated by changing their size and/or their shape. The energies of an electron increase as one reduces the quantum dot shape symmetry from spherical towards the lens-shaped. The magnetic field effect strongly interplays with the nanocrystal size and the nanocrystal shape effects. Such interplay has been attributed to the competition of the quantum confinement effect introduced by the barrier potential and the quantum confinement effect introduced by the applied magnetic field.  相似文献   

9.
Photoluminescence spectroscopy has been used to probe the occupied electron states below the Fermi energy of zero-dimensional electron systems (0DESs) in both zero and finite magnetic fields. The arrays of modulation-doped quantum dots investigated were fabricated by both reactive-ion etching and strain-confining GaAs heterojunctions with a -layer of Be present in the GaAs, in order to improve luminescence efficiency. For the etched quantum dots we show that the low magnetic field dispersion T) of the acceptor recombination line is directly related to the magnetic field dependence of the total ground-state energy of interacting electrons in the quantum dots. For the strain-confined 0DESs we have mapped the magneto-dispersion of the quantum confined electron states to reveal 15 electrons per dot.  相似文献   

10.
A method is developed for calculating the elastic deformation in coherently strained heterostructures on the basis of the valence force field (VFF) model using the Green’s function of the “atomistic” elastic problem. The spatial distribution of the elastic deformations in a Ge/Si system with pyramidal Ge quantum dots buried in a Si matrix is investigated theoretically. The deformation distribution in and around the pyramids is determined. Near quantum dots, the region near the tip of the pyramid is most strongly intensely. Inside quantum dots the region of the vertex is most relaxed, and the most strained section lies on the contour of the pyramid base. Compression occurs in the plane of the pyramid base inside quantum dots, and stretching occurs along the vertical direction. The picture is reversed near quantum dots: stretching occurs in the lateral direction and compression in the vertical direction. It is shown that the local deformations and their spatial distribution are essentially independent (to within the scaling) of the size of the quantum dots for 10–15 nm pyramid bases.  相似文献   

11.
Thirty years of effort in semiconductor quantum dots has resulted in significant developments in the control of spin quantum bits(qubits). The natural two-energy level of spin states provides a path toward quantum information processing. In particular, the experimental implementation of spin control with high fidelity provides the possibility of realizing quantum computing. In this review, we will discuss the basic elements of spin qubits in semiconductor quantum dots and summarize some important experiments that have demonstrated the direct manipulation of spin states with an applied electric field and/or magnetic field. The results of recent experiments on spin qubits reveal a bright future for quantum information processing.  相似文献   

12.
It was found that a stepwise increase in the interband light intensity causes an increase in the low-temperature lateral photoconductivity of a Si/Ge structure containing six layers of germanium quantum dots in a silicon host. As was previously observed in structures with a single layer of quantum dots, strengthening of the driving field results in the step positions shifting to lower light intensities. This effect was also found to take place under a dark driving field. The results are discussed in terms of the percolation theory of nonequilibrium electrons localized in the states between quantum dots.  相似文献   

13.
We consider the propagation of super-Gaussian monochromatic laser beams in a three-dimensional array of quantum dots coupled by the tunneling effect along one axis. The electron energy spectrum of the system corresponds to the Hubbard model, where the Coulomb interaction of electrons in quantum dots is taken into account. The field of the laser beam is described by the Maxwell equations, from which a nonhomogeneous wave equation for the vector potential is obtained. In the approximation of slowly varying amplitudes and phases, the wave equation is reduced to a phenomenological equation describing the electromagnetic field in an array of chains of quantum dots. We study the influence of the system parameters and the frequency of the laser-beam field on the propagation in the medium by solving numerically the phenomenological equation. We obtain the dependence of the factor characterizing the diffraction blooming of the beam in an array of chains of quantum dots on the parameters of the system’s electron energy spectrum.  相似文献   

14.
One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.  相似文献   

15.
A solid state quantum circuit where an ensemble of self-assembled quantum dots in a microdisk cavity served as long-lived quantum light memory, is investigated. It is shown that via laser coupling Raman process, the coherent transfer between the light field (qubits) and the ensemble spin states of the quantum dots can be efficient and fast. The coherence properties of the system are analyzed, which enables us to obtain a long coherence time.  相似文献   

16.
田惠忱  肖景林 《发光学报》2008,29(2):243-247
采用线性组合算符和幺正变换方法研究磁场对非对称量子点中弱耦合束缚磁极化子性质的影响。导出量子点中弱耦合束缚磁极化子振动频率和基态能量随量子点的横向和纵向有效受限长度、库仑束缚势、磁场的回旋共振频率和电子-声子耦合强度的变化关系。数值计算结果表明:非对称量子点中弱耦合束缚磁极化子的振动频率和基态能量随量子点的横向和纵向有效受限长度的减小而迅速增大。振动频率随库仑束缚势和磁场的回旋共振频率的增加而增大。基态能量随库仑束缚势和电子-声子耦合强度的增加而减小。  相似文献   

17.
We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p–d exchange interaction in diluted magnetic semiconductor (Cd0.57Mn0.43Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund–Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures.  相似文献   

18.
镶嵌于玻璃中的CdSe_(1-x)S_x量子点的电调制光谱测量   总被引:2,自引:0,他引:2  
王引书  王若桢 《光学技术》2002,28(5):462-464
采用直流偏置的交流调制电场测量了玻璃中各向同性的CdSe1 xSx 量子点的电调制光谱 ,介绍了各向同性材料电调制光谱的测量方法 ,分析了与一般电调制光谱测量方法不同的原因。采用偏置后的交流调制电场 ,可以检测到与电场同频率 ( 1f)而位相差 90°的CdSe1 xSx 量子点的电吸收信号 ,该信号比采用二倍频检测 ( 2 f)的信号大一个数量级 ,比通常采用正弦波调制电场的信号大 3个数量级。采用直流偏置调制电场有利于各向同性材料的电光性能的测量  相似文献   

19.
We propose a novel structure of single-electron two-channel multiplexer and demultiplexer based on three coupled single-dopant quantum dots defined by enhancement gates on AlGaAs/GaAs heterostructure. Two side-gates next to the dots are designed for applying a lateral switching field to the structure. A simple model of spherical parabolic quantum dot within effective-mass approximation demonstrates that the coupling strengths of the dots are adjustable by applying a lateral field. This gives the promise on achieving the functions of multiplexing and demultiplexing through the proposed structure.  相似文献   

20.
《Physics letters. A》2001,289(3):155-159
The ground states of N-electron parabolic quantum dots in the presence of a perpendicular magnetic field are investigated. Rigorous lower bounds to the ground-state energies are obtained. It is shown that our lower bounds agree well with the results of exact diagonalization. Analytic results for the lower bounds to the ground-state energies of the quantum dots in a strong magnetic field (known as electron molecule) agree very well with numerically calculated lower bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号