首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we derive two stabilized discontinuous finite element formulations, symmetric and nonsymmetric, for the Stokes equations and the equations of the linear elasticity for almost incompressible materials. These methods are derived via stabilization of a saddle point system where the continuity of the normal and tangential components of the velocity/displacements are imposed in a weak sense via Lagrange multipliers. For both methods, almost all reasonable pair of discontinuous finite element spaces can be used to approximate the velocity and the pressure. Optimal error estimate for the approximation of both the velocity of the symmetric formulation and pressure in L2L2 norm are obtained, as well as one in a mesh-dependent norm for the velocity in both symmetric and nonsymmetric formulations.  相似文献   

2.
A nonlinear coupled elliptic system modelling a large class of engineering problems was discussed in [A.F.D. Loula, J. Zhu, Finite element analysis of a coupled nonlinear system, Comp. Appl. Math. 20 (3) (2001) 321–339; J. Zhu, A.F.D. Loula, Mixed finite element analysis of a thermally nonlinear coupled problem, Numer. Methods Partial Differential Equations 22 (1) (2006) 180–196]. The convergence analysis of iterative finite element approximation to the solution was done under an assumption of ‘small’ solution or source data which guarantees the uniqueness of the nonlinear coupled system. Generally, a nonlinear system may have multiple solutions. In this work, the regularity of the weak solutions is further studied. The nonlinear finite element approximations to the nonsingular solutions are then proposed and analyzed. Finally, the optimal order error estimates in H1H1-norm and L2L2-norm as well as in W1,pW1,p-norm and LpLp-norm are obtained.  相似文献   

3.
A second-order scheme for the Gray–Scott (GS) model used to describe the pattern formation is studied. The linear part of the GS equation for the time derivative and the viscous terms is discretized implicitly, while the other (or nonlinear) part of the GS equation explicitly. Galerkin finite element approximation methods are presented and analyzed, as well as methods for solving the resulting system of equations. The optimal L2L2-norm error estimates are derived. Numerical experiments are presented.  相似文献   

4.
In this paper, we study nonconforming finite element method for stochastic Stokes equation driven by white noise. We apply “green function framework” and standard duality technique to study the error estimate for velocity in L2L2-norm and for pressure in H-1H-1-norm. Finally, numerical experiment proves our theoretical results.  相似文献   

5.
This paper is devoted to analyze a splitting method for solving incompressible inviscid rotational flows. The problem is first recast into the velocity–vorticity–pressure formulation by introducing the additional vorticity variable, and then split into three consecutive subsystems. For each subsystem, the L2L2 least-squares finite element approach is applied to attain accurate numerical solutions. We show that for each time step this splitting least-squares approach exhibits an optimal rate of convergence in the H1H1 norm for velocity and pressure, and a suboptimal rate in the L2L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates.  相似文献   

6.
Two-grid methods are studied for solving a two dimensional nonlinear parabolic equation using finite volume element method. The methods are based on one coarse-grid space and one fine-grid space. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine-grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. The two-grid methods achieve asymptotically optimal approximation as long as the mesh sizes satisfy h=O(H3|lnH|)h=O(H3|lnH|). As a result, solving such a large class of nonlinear parabolic equations will not be much more difficult than solving one single linearized equation.  相似文献   

7.
In this paper, we consider the superconvergence of a mixed covolume method on the quasi-uniform triangular grids for the variable coefficient-matrix Poisson equations. The superconvergence estimates between the solution of the mixed covolume method and that of the mixed finite element method have been obtained. With these superconvergence estimates, we establish the superconvergence estimates and the LL-error estimates for the mixed covolume method for the elliptic problems. Based on the superconvergence of the mixed covolume method, under the condition that the triangulation is uniform, we construct a post-processing method for the approximate velocity which improves the order of approximation of the approximate velocity.  相似文献   

8.
In this paper, we develop a finite volume element method with affine quadratic bases on right quadrangular prism meshes for three-dimensional elliptic boundary value problems. The optimal H1H1-norm error estimate of second order accuracy is proved under certain assumptions about the meshes. Numerical results are presented to illustrate the theoretical analysis.  相似文献   

9.
In this paper, we propose a least-squares mixed element procedure for a reaction–diffusion problem based on the first-order system. By selecting the least-squares functional properly, the resulting procedure can be split into two independent symmetric positive definite schemes, one of which is for the unknown variable and the other of which is for the unknown flux variable, which lead to the optimal order H1(Ω)H1(Ω) and L2(Ω)L2(Ω) norm error estimates for the primal unknown and optimal H(div;Ω)H(div;Ω) norm error estimate for the unknown flux. Finally, we give some numerical examples.  相似文献   

10.
11.
This article is to discuss the linear (which was proposed in  and ) and bilinear immersed finite element (IFE) methods for solving planar elasticity interface problems with structured Cartesian meshes. Basic features of linear and bilinear IFE functions, including the unisolvent property, will be discussed. While both methods have comparable accuracy, the bilinear IFE method requires less time for assembling its algebraic system. Our analysis further indicates that the bilinear IFE functions are guaranteed to be applicable to a larger class of elasticity interface problems than linear IFE functions. Numerical examples are provided to demonstrate that both linear and bilinear IFE spaces have the optimal approximation capability, and that numerical solutions produced by a Galerkin method with these IFE functions for elasticity interface problem also converge optimally in both L2L2 and semi-H1H1 norms.  相似文献   

12.
In this paper, the linear conforming finite element method for the one-dimensional Bérenger's PML boundary is investigated and well-posedness of the given equation is discussed. Furthermore, optimal error estimates and stability in the L2L2 or H1H1-norm are derived under the assumption that hh, h2ω2h2ω2 and h2ω3h2ω3 are sufficiently small, where hh is the mesh size and ωω denotes a fixed frequency. Numerical examples are presented to validate the theoretical error bounds.  相似文献   

13.
This paper derives a general procedure to produce an asymptotic expansion for eigenvalues of the Stokes problem by mixed finite elements. By means of integral expansion technique, the asymptotic error expansions for the approximations of the Stokes eigenvalue problem by Bernadi–Raugel element and Q2-P1Q2-P1 element are given. Based on such expansions, the extrapolation technique is applied to improve the accuracy of the approximations.  相似文献   

14.
15.
In this paper, a discontinuous Galerkin method for the two-dimensional time-harmonic Maxwell equations in composite materials is presented. The divergence constraint is taken into account by a regularized variational formulation and the tangential and normal jumps of the discrete solution at the element interfaces are penalized. Due to an appropriate mesh refinement near exterior and interior corners, the singular behaviour of the electromagnetic field is taken into account. Optimal error estimates in a discrete energy norm and in the L2L2-norm are proved in the case where the exact solution is singular.  相似文献   

16.
In this paper, a C0C0 least-squares finite element method for second-order two-point boundary value problems is considered. The problem is recast as a first-order system. Standard and improved optimal error estimates in maximum-norms are established. Superconvergence estimates at interelement, Lobatto, and Gauss points are developed. Numerical experiments are given to illustrate theoretical results.  相似文献   

17.
A finite volume method based on stabilized finite element for the two-dimensional stationary Navier–Stokes equations is investigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation for the problem. We obtain the well-posedness of the FVM based on stabilized finite element for the stationary Navier–Stokes equations. Moreover, for quadrilateral and triangular partition, the optimal H1H1 error estimate of the finite volume solution uhuh and L2L2 error estimate for phph are introduced. Finally, we provide a numerical example to confirm the efficiency of the FVM.  相似文献   

18.
19.
A combined method consisting of mixed finite element method (MFEM) for the pressure equation and expanded mixed finite element method with characteristics(CEMFEM) for the concentration equation is presented to solve the coupled system of incompressible miscible displacement problem. To solve the resulting nonlinear system of equations efficiently, the two‐grid algorithm relegates all of the Newton‐like iterations to grids much coarser than the original one, with no loss in order of accuracy. It is shown that coarse space can be extremely coarse and our algorithm achieve asymptotically optimal approximation when the mesh sizes satisfy H = O ( h 1 4 ) . Numerical experiment is provided to confirm our theoretical results.  相似文献   

20.
In this paper, we study probabilistic numerical methods based on optimal quantization algorithms for computing the solution to optimal multiple switching problems with regime-dependent state process. We first consider a discrete-time approximation of the optimal switching problem, and analyse its rate of convergence. Given a time step hh, the error is in general of order (hlog(1/h))1/2(hlog(1/h))1/2, and of order h1/2h1/2 when the switching costs do not depend on the state process. We next propose quantization numerical schemes for the space discretization of the discrete-time Euler state process. A Markovian quantization approach relying on the optimal quantization of the normal distribution arising in the Euler scheme is analysed. In the particular case of uncontrolled state process, we describe an alternative marginal quantization method, which extends the recursive algorithm for optimal stopping problems as in Bally (2003) [1]. A priori LpLp-error estimates are stated in terms of quantization errors. Finally, some numerical tests are performed for an optimal switching problem with two regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号