首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The attribute based hill climber (ABHC) is a variant of the general tabu-search principle which has shown to be competitive with respect to quality as well as efficiency to other local search heuristics for the two corner stone problems in combinatorial optimization: the travelling salesman problem and the quadratic assignment problem. ABHC is completely parameter-free, and its generic logic depends on the concept of partitioning the solution space based on solution “attributes”, which is the problem-specific choice. In this paper we analyze the effectiveness of this concept and the efficiency of the ABHC heuristic for the general vehicle routing problem.  相似文献   

2.
We propose and develop an efficient implementation of the robust tabu search heuristic for sparse quadratic assignment problems. The traditional implementation of the heuristic applicable to all quadratic assignment problems is of O(N2) complexity per iteration for problems of size N. Using multiple priority queues to determine the next best move instead of scanning all possible moves, and using adjacency lists to minimize the operations needed to determine the cost of moves, we reduce the asymptotic (N → ∞) complexity per iteration to O(N log N). For practical sized problems, the complexity is O(N).  相似文献   

3.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

4.
The single vehicle routing problem with pickups and deliveries (SVRPPD) is defined on a graph in which pickup and delivery demands are associated with the customer vertices. The problem consists of designing a least cost route for a vehicle of capacity Q. Each customer is allowed to be visited once for a combined pickup and delivery, or twice if these two operations are performed separately. This article proposes a mixed integer linear programming model for the SVRPPD. It introduces the concept of general solution which encompasses known solution shapes such as Hamiltonian, double-path and lasso. Classical construction and improvement heuristics, as well as a tabu search heuristic, are developed and tested over several instances. Computational results show that the best solutions generated by the heuristics are frequently non-Hamiltonian and may contain up to two customers visited twice.  相似文献   

5.
A new approach for solving the generalized assignment problem (GAP) is proposed that combines the exact branch & bound approach with the heuristic strategy of tabu search (TS) to produce a hybrid algorithm for solving GAP. The algorithm described uses commercial software to solve sub-problems generated by the TS guiding strategy. The TS approach makes use of the concept of referent domain optimisation and introduces novel add/drop strategies. In addition, the linear programming relaxation of GAP that forms part of the branch & bound approach is itself helpful in suggesting which variables might take binary values. Computational results on benchmark test instances are presented and compared with results obtained by the standard branch & bound approach and also several other heuristic approaches from the literature. The results show the new algorithm performs competitively against the alternatives and is able to find some new best solutions for several benchmark instances.  相似文献   

6.
The quadratic assignment problem (QAP), one of the most difficult problems in the NP-hard class, models many real-life problems in several areas such as facilities location, parallel and distributed computing, and combinatorial data analysis. Combinatorial optimization problems, such as the traveling salesman problem, maximal clique and graph partitioning can be formulated as a QAP. In this paper, we present some of the most important QAP formulations and classify them according to their mathematical sources. We also present a discussion on the theoretical resources used to define lower bounds for exact and heuristic algorithms. We then give a detailed discussion of the progress made in both exact and heuristic solution methods, including those formulated according to metaheuristic strategies. Finally, we analyze the contributions brought about by the study of different approaches.  相似文献   

7.
In this study, we introduce a cooperative parallel tabu search algorithm (CPTS) for the quadratic assignment problem (QAP). The QAP is an NP-hard combinatorial optimization problem that is widely acknowledged to be computationally demanding. These characteristics make the QAP an ideal candidate for parallel solution techniques. CPTS is a cooperative parallel algorithm in which the processors exchange information throughout the run of the algorithm as opposed to independent concurrent search strategies that aggregate data only at the end of execution. CPTS accomplishes this cooperation by maintaining a global reference set which uses the information exchange to promote both intensification and strategic diversification in a parallel environment. This study demonstrates the benefits that may be obtained from parallel computing in terms of solution quality, computational time and algorithmic flexibility. A set of 41 test problems obtained from QAPLIB were used to analyze the quality of the CPTS algorithm. Additionally, we report results for 60 difficult new test instances. The CPTS algorithm is shown to provide good solution quality for all problems in acceptable computational times. Out of the 41 test instances obtained from QAPLIB, CPTS is shown to meet or exceed the average solution quality of many of the best sequential and parallel approaches from the literature on all but six problems, whereas no other leading method exhibits a performance that is superior to this.  相似文献   

8.
The periodic vehicle routing problem (PVRP) consists in establishing a planning of visits to clients over a given time horizon so as to satisfy some service level while optimizing the routes used in each time period. The tactical planning model considered here restricts its attention to scheduling visits and assigning them to vehicles while leaving sequencing decisions for an underlying operational model. The objective is twofold: to optimize regional compactness of the routes in a desire to specialize routes to restricted geographical area and to balance the workload evenly between vehicles. Approximate solutions are constructed using a truncated column generation procedure followed by a rounding heuristic. This mathematical programming based procedure can deal with problems with 50–80 customers over five working days which is the range of size of most PVRP instances treated in the literature with meta-heuristics. The paper highlights the importance of alternative optimization criteria not accounted for in standard operational models and provides insights on the implementation of a column generation based rounding heuristic.  相似文献   

9.
For almost two decades the question of whether tabu search (TS) or simulated annealing (SA) performs better for the quadratic assignment problem has been unresolved. To answer this question satisfactorily, we compare performance at various values of targeted solution quality, running each heuristic at its optimal number of iterations for each target. We find that for a number of varied problem instances, SA performs better for higher quality targets while TS performs better for lower quality targets.  相似文献   

10.
This paper describes an attribute based tabu search heuristic for the generalized minimum spanning tree problem (GMSTP) known to be NP-hard. Given a graph whose vertex set is partitioned into clusters, the GMSTP consists of designing a minimum cost tree spanning all clusters. An attribute based tabu search heuristic employing new neighborhoods is proposed. An extended set of TSPLIB test instances for the GMSTP is generated and the heuristic is compared with recently proposed genetic algorithms. The proposed heuristic yields the best results for all instances. Moreover, an adaptation of the tabu search algorithm is proposed for a variation of the GMSTP in which each cluster must be spanned at least once.  相似文献   

11.
The model configuration problem (MCP) is a combinatorial optimization problem with application in the telecommunications manufacturing industry. The product is a switching cabinet, defined by a number of positions (slots) in which specific circuit packs are installed according to the customer requirements (configurations). Variety of customer requirements leads to a relatively large number of distinct configurations. In order to streamline the manufacturing process, a large number of switching cabinets with identical configurations (model cabinets) are produced in advance. A customer order is then filled by selecting a model cabinet whose configuration is relatively close to the customer configuration and performing any necessary circuit pack exchanges to make its configuration identical to the customer requirement. The manufacturing costs are proportional to the number of these circuit pack exchanges, and the q-model configuration problem is to design q different model configurations so as to minimize the total number of exchanges for a given collection of customer orders. We propose three heuristic algorithms for solving the q-model configuration problem and carry out a computational experiment to evaluate their effectiveness.  相似文献   

12.
This paper presents a highly effective reinforcement learning enhancement of multi-neighborhood tabu search for the max-mean dispersion problem. The reinforcement learning component uses the Q-learning mechanism that incorporates the accumulated feedback information collected from the actions performed during the search to guide the generation of diversified solutions. The tabu search component employs 1-flip and reduced 2-flip neighborhoods to collaboratively perform the neighborhood exploration for attaining high-quality local optima. A learning automata method is integrated in tabu search to adaptively determine the probability of selecting each neighborhood. Computational experiments on 80 challenging benchmark instances demonstrate that the proposed algorithm is favorably competitive with the state-of-the-art algorithms in the literature, by finding new lower bounds for 3 instances and matching the best known results for the other instances. Key elements and properties are also analyzed to disclose the source of the benefits of our integration of learning mechanisms and tabu search.  相似文献   

13.
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the multi-objective flexible job shop scheduling problem with maintenance activities. Performance criteria considered are the maximum completion time so called makespan, the total workload of machines and the workload of the critical machine. Unlike the original ABC algorithm, the proposed DABC algorithm presents a unique solution representation where a food source is represented by two discrete vectors and tabu search (TS) is applied to each food source to generate neighboring food sources for the employed bees, onlooker bees, and scout bees. An efficient initialization scheme is introduced to construct the initial population with a certain level of quality and diversity. A self-adaptive strategy is adopted to enable the DABC algorithm with learning ability for producing neighboring solutions in different promising regions whereas an external Pareto archive set is designed to record the non-dominated solutions found so far. Furthermore, a novel decoding method is also presented to tackle maintenance activities in schedules generated. The proposed DABC algorithm is tested on a set of the well-known benchmark instances from the existing literature. Through a detailed analysis of experimental results, the highly effective and efficient performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.  相似文献   

14.
The simple assembly line balancing problem (SALBP) is a well-studied NP-complete problem for which a new problem database of generated instances was published in 2013. This paper describes the application of a branch, bound, and remember (BB&R) algorithm using the cyclic best-first search strategy to this new database to produce provably exact solutions for 86% of the unsolved problems in this database. A new backtracking rule to save memory is employed to allow the BB&R algorithm to solve many of the largest problems in the database.  相似文献   

15.
LaGO: a (heuristic) Branch and Cut algorithm for nonconvex MINLPs   总被引:1,自引:0,他引:1  
We present a Branch and Cut algorithm of the software package LaGO to solve nonconvex mixed-integer nonlinear programs (MINLPs). A linear outer approximation is constructed from a convex relaxation of the problem. Since we do not require an algebraic representation of the problem, reformulation techniques for the construction of the convex relaxation cannot be applied, and we are restricted to sampling techniques in case of nonquadratic nonconvex functions. The linear relaxation is further improved by mixed-integer-rounding cuts. Also box reduction techniques are applied to improve efficiency. Numerical results on medium size test problems are presented to show the efficiency of the method.  相似文献   

16.
This paper investigates the development of an effective heuristic to solve the set covering problem (SCP) by applying the meta-heuristic Meta-RaPS (Meta-heuristic for Randomized Priority Search). In Meta-RaPS, a feasible solution is generated by introducing random factors into a construction method. Then the feasible solutions can be improved by an improvement heuristic. In addition to applying the basic Meta-RaPS, the heuristic developed herein integrates the elements of randomizing the selection of priority rules, penalizing the worst columns when the searching space is highly condensed, and defining the core problem to speedup the algorithm. This heuristic has been tested on 80 SCP instances from the OR-Library. The sizes of the problems are up to 1000 rows × 10,000 columns for non-unicost SCP, and 28,160 rows × 11,264 columns for the unicost SCP. This heuristic is only one of two known SCP heuristics to find all optimal/best known solutions for those non-unicost instances. In addition, this heuristic is the best for unicost problems among the heuristics in terms of solution quality. Furthermore, evolving from a simple greedy heuristic, it is simple and easy to code. This heuristic enriches the options of practitioners in the optimization area.  相似文献   

17.
Cutting stock problems deal with the generation of a set of cutting patterns that minimizes waste. Sometimes it is also important to find the processing sequence of this set of patterns to minimize the maximum queue of partially cut orders. In such instances a cutting sequencing problem has to be solved. This paper presents a new mathematical model and a three-phase approach for the cutting sequencing problem. In the first phase, a greedy algorithm produces a good starting solution that is improved in the second phase by a tabu search, or a generalized local search procedure, while, in the last phase, the problem is optimally solved by an implicit enumeration procedure that uses the best solution previously found as an upper bound. Computing experience, based on 300 randomly generated problems, shows the good performance of the heuristic methods presented.  相似文献   

18.
This paper is devoted to the study of a resource-constrained scheduling problem, the Process Move Programming problem, which arises in relation to the operability of certain high availability real-time distributed systems. Informally, this problem consists, starting from an arbitrary initial distribution of processes on the processors of a distributed system, in finding the least disruptive sequence of operations (non-impacting process migrations or temporary process interruptions) at the end of which the system ends up in another predefined arbitrary state. The main constraint is that the capacity of the processors must not be exceeded during the reconfiguration. After a brief survey of the literature, we prove the NP-hardness of the problem and exhibit a few polynomial special cases. We then present a branch-and-bound algorithm for the general case along with computational results demonstrating its practical relevance. The paper is concluded by a discussion on further research.  相似文献   

19.
The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the traditional TSP where the travel cost between two cities depends on the moment of the day the arc is travelled. In this paper, we focus on the case where the travel time between two cities depends not only on the distance between them, but also on the position of the arc in the tour. We consider two formulations proposed in the literature, we analyze the relationship between them and derive several families of valid inequalities and facets. In addition to their theoretical properties, they prove to be very effective in the context of a Branch and Cut algorithm.  相似文献   

20.
In this paper, we consider the balanced unidirectional cyclic layout problem (BUCLP) arising in the determination of workstation locations around a closed loop conveyor system, in the allocation of cutting tools on the sites around a turret, in the positioning of stations around a unidirectional single loop AGV path. BUCLP is known to be NP-Complete. One important property of this problem is the balanced material flow assumption where the material flow is conserved at every workstation. We first develop a branch-and-bound procedure by using the special material flow property of the problem. Then, we propose a dynamic programming algorithm, which provides optimum solutions for instances with up to 20 workstations due to memory limitations. The branch and bound procedure can solve problems with up to 50 workstations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号