首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Traditional methods of developing flight schedules generally do not take into consideration disruptions that may arise during actual operations. Potential irregularities in airline operations such as equipment failure are not adequately considered during the planning stage of a flight schedule. As such, flight schedules cannot be met as planned and their performance is compromised, which may eventually lead to huge losses in revenue for airlines. In this paper, we seek to improve the robustness of a flight schedule by re-timing its departure times. The problem is modeled as a multi-objective optimization problem, and a multi-objective genetic algorithm (MOGA) is developed to solve the problem. To evaluate flight schedules, SIMAIR 2.0, a simulation model which simulates airline operations under operational irregularities, has been employed. The simulation results indicate that we are able to develop schedules with better operation costs and on-time performance through the application of MOGA.  相似文献   

2.
PRECON S.A. is a manufacturing company devoted to produce prefabricated concrete parts for several industries as railway transportation and agricultural industries. Recently, PRECON S.A. signed a contract with RENFE, the Spanish National Railway Company, to manufacture pre-stressed concrete sleepers for the sidings of the new railways of the high speed train (AVE). The scheduling problem associated with the manufacturing process of the sleepers is very complex, since this involves several constraints and objectives. These constraints are related to production capacity, the quantity of available moulds, demand satisfaction and other operational constraints. The two main objectives are related to the way to maximize the utilization of manufacturing resources and minimize mould movements. We developed a deterministic crowding genetic algorithm for this multiobjective problem. The algorithm has proved to be a powerful and flexible tool to solve large-scale instances of this real and complex scheduling problem.  相似文献   

3.
The coordination of just-in-time production and transportation in a network of partially independent facilities to guarantee timely delivery to distributed customers is one of the most challenging aspect of supply chain management. From a theoretical perspective, the timely production/distribution can be viewed as a hybrid combination of planning, scheduling and routing problems, each notoriously affected by nearly prohibitive combinatorial complexity. From a practical viewpoint, the problem calls for a trade-off between risks and profits. This paper focuses on the ready-mixed concrete delivery: in addition to the mentioned complexity, strict time-constraints forbid both earliness and lateness of the supply. After developing a detailed model of the considered problem, we propose a novel meta-heuristic approach based on a hybrid genetic algorithm combined with constructive heuristics. A detailed case study derived from industrial data is used to illustrate the potential of the proposed approach.  相似文献   

4.
Generation scheduling (GS) in power systems is a tough optimisation problem which continues to present a challenge for efficient solution techniques. The solution is to define on/off decisions and generation levels for each electricity generator of a power system for each scheduling interval. The solution procedure requires simultaneous consideration of binary decision and continuous variables. In recent years researchers have focused much attention on developing new hybrid approaches using evolutionary and traditional exact methods for this type of mixed-integer problems. This paper investigates how the optimum or near optimum solution for the GS problem may be quickly identified. A design is proposed which uses a variety of metaheuristic, heuristics and mathematical programming techniques within a hybrid framework. The results obtained for two case studies are promising and show that the hybrid approach offers an effective alternative for solving the GS problems within a realistic timeframe.  相似文献   

5.
Genetic algorithms for the traveling salesman problem   总被引:2,自引:0,他引:2  
This paper is a survey of genetic algorithms for the traveling salesman problem. Genetic algorithms are randomized search techniques that simulate some of the processes observed in natural evolution. In this paper, a simple genetic algorithm is introduced, and various extensions are presented to solve the traveling salesman problem. Computational results are also reported for both random and classical problems taken from the operations research literature.  相似文献   

6.
We study approximation of some well-known network design problems such as the traveling salesman problem (for both minimization and maximization versions) and the min steiner tree problem by moderately exponential algorithms. The general goal of the issue of moderately exponential approximation is to catch up on polynomial inapproximability by designing superpolynomial algorithms achieving approximation ratios unachievable in polynomial time. Worst-case running times of such algorithms are significantly smaller than those needed for optimal solutions of the problems handled.  相似文献   

7.
Given a tour visitingn points in a metric space, thelatency of one of these pointsp is the distance traveled in the tour before reachingp. Theminimum latency problem (MLP) asks for a tour passing throughn given points for which the total latency of then points is minimum; in effect, we are seeking the tour with minimum average arrival time. This problem has been studied in the operations research literature, where it has also been termed the delivery-man problem and the traveling repairman problem. The approximability of the MLP was first considered by Sahni and Gonzalez in 1976; however, unlike the classical traveling salesman problem (TSP), it is not easy to give any constant-factor approximation algorithm for the MLP. Recently, Blum et al. (A. Blum, P. Chalasani, D. Coppersimith, W. Pulleyblank, P. Raghavan, M. Sudan, Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994, pp. 163–171) gave the first such algorithm, obtaining an approximation ratio of 144. In this work, we develop an algorithm which improves this ratio to 21.55; moreover, combining our algorithm with a recent result of Garg (N. Garg, Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, 1996, pp. 302–309) provides an approximation ratio of 10.78. The development of our algorithm involves a number of techniques that seem to be of interest from the perspective of the TSP and its variants more generally. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Supported by NSF contract 9302476-CCR and an NEC research grant.Author supported by an ONR Graduate Fellowship.  相似文献   

8.
9.
This research proposes two heuristics and a Genetic Algorithm (GA) to find non-dominated solutions to multiple-objective unrelated parallel machine scheduling problems. Three criteria are of interest, namely: makespan, total weighted completion time, and total weighted tardiness. Each heuristic seeks to simultaneously minimize a pair of these criteria; the GA seeks to simultaneously minimize all three. The computational results show that the proposed heuristics are computationally efficient and provide solutions of reasonable quality. The proposed GA outperforms other algorithms in terms of the number of non-dominated solutions and the quality of its solutions.  相似文献   

10.
We review approximability and inapproximability results for MIN-SUM scheduling problems and we focus on techniques for designing polynomial time approximation schemes for this class of problems. We present examples which illustrate the efficient use of the ratio partitioning and time partitioning techniques.  相似文献   

11.
In this work we present a new scheduling model for parallel machines, which extends the multiprocessor scheduling problem with release times for minimizing the total tardiness, and also extends the problem of vehicle routing with time windows. This new model is motivated by a resource allocation problem, which appears in the service sector. We present two class of heuristic algorithms for the solution of the problem, the first class is a class of greedy algorithms, the second class is based on the solutions of linear assignment problems. Furthermore we give a rescheduling algorithm, which improves a given feasible solution of the problem. This research has been supported by the Hungarian National Foundation for Scientific Research, Grant T046405.  相似文献   

12.
In real life scheduling, variations of the standard traveling salesman problem are very often encountered. The aim of this work is to present a new heuristic method for solving three such special instances with a common approach. The proposed algorithm uses a variant of the threshold accepting method, enhanced with intense local search, while the candidate solutions are produced through an insertion heuristic scheme. The main characteristic of the algorithm is that it does not require modifications and parameter tuning in order to cope with the three different problems. Computational results on a variety of real life and artificial problems are presented at the end of this work and prove the efficiency and the ascendancy of the proposed method over other algorithms found in the literature.  相似文献   

13.
14.
We give an online algorithm for minimizing the total weighted completion time on a single machine where preemption of jobs is allowed and prove that its competitive ratio is at most 1.57.  相似文献   

15.
A server needs to compute a broadcast schedule for n pages whose request times are known in advance. Outputting a page satisfies all outstanding requests for the page. The goal is to minimize the average waiting time of a client. In this paper, we show the equivalence of two apparently different relaxations that have been considered for this problem.  相似文献   

16.
The purpose of this paper is to study the latest schedule existence, calculation and properties of a basic cyclic scheduling problem with deadlines. First it is shown that, in the general case, a latest schedule exists but may be difficult to compute. Then we focus on a special case we call the optimal cyclic production problem. We derive an upper bound for the number of maximal-path values needed to compute the latest starting times and show the K-periodic structure of the latest starting time sequences.  相似文献   

17.
For most scheduling problems the set of machines is fixed initially and remains unchanged for the duration of the problem. Recently online scheduling problems have been investigated with the modification that initially the algorithm possesses no machines, but that at any point additional machines may be purchased. In all of these models the assumption has been made that each machine has unit cost. In this paper we consider the problem with general machine cost functions. Furthermore we also consider a more general version of the problem where the available machines have speed, the algorithm may purchase machines with speed 1 and machines with speed s. We define and analyze some algorithms for the solution of these problems and their special cases. Moreover we prove some lower bounds on the possible competitive ratios.  相似文献   

18.
We consider the Survivable Network Design Problem (SNDP) and the Symmetric Traveling Salesman Problem (STSP). We give simpler proofs of the existence of a -edge and 1-edge in any extreme point of the natural LP relaxations for the SNDP and STSP, respectively. We formulate a common generalization of both problems and show our results by a new counting argument. We also obtain a simpler proof of the existence of a -edge in any extreme point of the set-pair LP relaxation for the element connectivitySurvivable Network Design Problem ().  相似文献   

19.
In this paper we define and investigate a new scheduling model. In this new model the number of machines is not fixed; the algorithm has to purchase the used machines, moreover the jobs can be rejected. We show that the simple combinations of the algorithms used in the area of scheduling with rejections and the area of scheduling with machine cost are not constant competitive. We present a 2.618-competitive algorithm called OPTCOPY.  相似文献   

20.
In this paper, we present new approximation results for the offline problem of single machine scheduling with sequence-independent set-ups and item availability, where the jobs to be scheduled are independent (i.e., have no precedence constraints) and have a common release time.We present polynomial-time approximation algorithms for two versions of this problem. In the first version, the input includes a weight for each job, and the goal is to minimize the total weighted completion time. On any input, our algorithm produces a schedule whose total weighted completion time is within a factor 2 of optimal for that input.In the second version, the input includes a due date for each job, and the goal is to minimize the maximum lateness of any job. On any input, our algorithm produces a schedule with the following performance guarantee: the maximum lateness of a job is at most the maximum lateness of the optimal schedule on a machine that runs at half the speed of our machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号