首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, on the basis of matrix splitting, two preconditioners are proposed and analyzed, for nonsymmetric saddle point problems. The spectral property of the preconditioned matrix is studied in detail. When the iteration parameter becomes small enough, the eigenvalues of the preconditioned matrices will gather into two clusters—one is near (0,0) and the other is near (2,0)—for the PPSS preconditioner no matter whether A is Hermitian or non-Hermitian and for the PHSS preconditioner when A is a Hermitian or real normal matrix. Numerical experiments are given, to illustrate the performances of the two preconditioners.  相似文献   

2.
刘瑶宁 《计算数学》2022,44(2):187-205
一类空间分数阶扩散方程经过有限差分离散后所得到的离散线性方程组的系数矩阵是两个对角矩阵与Toeplitz型矩阵的乘积之和.在本文中,对于几乎各向同性的二维或三维空间分数阶扩散方程的离散线性方程组,采用预处理Krylov子空间迭代方法,我们利用其系数矩阵的特殊结构和具体性质构造了一类分块快速正则Hermite分裂预处理子.通过理论分析,我们证明了所对应的预处理矩阵的特征值大部分都聚集于1的附近.数值实验也表明,这类分块快速正则Hermite分裂预处理子可以明显地加快广义极小残量(GMRES)方法和稳定化的双共轭梯度(BiCGSTAB)方法等Krylov子空间迭代方法的收敛速度.  相似文献   

3.
We construct, analyze, and implement SSOR‐like preconditioners for non‐Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew‐Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR‐like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR‐like preconditioners, are efficient solvers for these classes of non‐Hermitian positive definite linear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, for solving the singular saddle point problems, we present a new preconditioned accelerated Hermitian and skew-Hermitian splitting (AHSS) iteration method. The semi-convergence of this method and the eigenvalue distribution of the preconditioned iteration matrix are studied. In addition, we prove that all eigenvalues of the iteration matrix are clustered for any positive iteration parameters α and β. Numerical experiments illustrate the theoretical results and examine the numerical effectiveness of the AHSS iteration method served either as a preconditioner or as a solver.  相似文献   

5.
For the Hermitian and skew‐Hermitian splitting iteration method and its accelerated variant for solving the large sparse saddle‐point problems, we compute their quasi‐optimal iteration parameters and the corresponding quasi‐optimal convergence factors for the more practical but more difficult case that the (1, 1)‐block of the saddle‐point matrix is not algebraically equivalent to the identity matrix. In addition, the algebraic behaviors and the clustering properties of the eigenvalues of the preconditioned matrices with respect to these two iterations are investigated in detail, and the formulas for computing good iteration parameters are given under certain principle for optimizing the distribution of the eigenvalues. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a class of limited memory preconditioners (LMP) for solving linear systems of equations with symmetric indefinite matrices and multiple right‐hand sides. These preconditioners based on limited memory quasi‐Newton formulas require a small number k of linearly independent vectors and may be used to improve an existing first‐level preconditioner. The contributions of the paper are threefold. First, we derive a formula to characterize the spectrum of the preconditioned operator. A spectral analysis of the preconditioned matrix shows that the eigenvalues are all real and that the LMP class is able to cluster at least k eigenvalues at 1. Secondly, we show that the eigenvalues of the preconditioned matrix enjoy interlacing properties with respect to the eigenvalues of the original matrix provided that the k linearly independent vectors have been prior projected onto the invariant subspaces associated with the eigenvalues of the original matrix in the open right and left half‐plane, respectively. Third, we focus on theoretical properties of the Ritz‐LMP variant, where Ritz information is used to determine the k vectors. Finally, we illustrate the numerical behaviour of the Ritz limited memory preconditioners on realistic applications in structural mechanics that require the solution of sequences of large‐scale symmetric saddle‐point systems. Numerical experiments show the relevance of the proposed preconditioner leading to a significant decrease in terms of computational operations when solving such sequences of linear systems. A saving of up to 43% in terms of computational effort is obtained on one of these applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we construct new ω‐circulant preconditioners for non‐Hermitian Toeplitz systems, where we allow the generating function of the sequence of Toeplitz matrices to have zeros on the unit circle. We prove that the eigenvalues of the preconditioned normal equation are clustered at 1 and that for (N, N)‐Toeplitz matrices with spectral condition number 𝒪(Nα) the corresponding PCG method requires at most 𝒪(N log2 N) arithmetical operations. If the generating function of the Toeplitz sequence is a rational function then we show that our preconditioned original equation has only a fixed number of eigenvalues which are not equal to 1 such that preconditioned GMRES needs only a constant number of iteration steps independent of the dimension of the problem. Numerical tests are presented with PCG applied to the normal equation, GMRES, CGS and BICGSTAB. In particular, we apply our preconditioners to compute the stationary probability distribution vector of Markovian queuing models with batch arrival. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A classical theorem of Cauchy states that the eigenvalues of a principal submatrix A0 of a Hermitian matrix A interlace the eigenvalues of A. We consider the case of a matrix A which is Hermitian with respect to an indefinite inner product.  相似文献   

9.
Suppose that the eigenvalues of an Hermitian matrix A whose graph is a tree T are known, as well as the eigenvalues of the principal submatrix of A corresponding to a certain branch of T. A method for constructing a larger tree T?', in which the branch is ‘`duplicated’', and an Hermitian matrix A′ whose graph is T?' is described. The eigenvalues of A' are all of those of A, together with those corresponding to the branch, including multiplicities. This idea is applied (1) to give a solution to the inverse eigenvalue problem for stars, (2) to prove that the known diameter lower bound, for the minimum number of distinct eigenvalues among Hermitian matrices with a given graph, is best possible for trees of bounded diameter, and (3) to increase the list of trees for which all possible lists for the possible spectra are know. A generalization of the basic branch duplication method is presented.  相似文献   

10.
In this paper we consider a numerical enclosure method for multiple eigenvalues of an Hermitian matrix whose graph is a tree. If an Hermitian matrix A whose graph is a tree has multiple eigenvalues, it has the property that matrices which are associated with some branches in the undirected graph of A have the same eigenvalues. By using this property and interlacing inequalities for Hermitian matrices, we show an enclosure method for multiple eigenvalues of an Hermitian matrix whose graph is a tree. Since we do not generally know whether a given matrix has exactly a multiple eigenvalue from approximate computations, we use the property of interlacing inequalities to enclose some eigenvalues including multiplicities.In this process, we only use the enclosure of simple eigenvalues to enclose a multiple eigenvalue by using a computer and interval arithmetic.  相似文献   

11.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, an improved block splitting preconditioner for a class of complex symmetric indefinite linear systems is proposed. By adopting two iteration parameters and the relaxation technique, the new preconditioner not only remains the same computational cost with the block preconditioners but also is much closer to the original coefficient matrix. The theoretical analysis shows that the corresponding iteration method is convergent under suitable conditions and the preconditioned matrix can have well-clustered eigenvalues around (0,1) with a reasonable choice of the relaxation parameters. An estimate concerning the dimension of the Krylov subspace for the preconditioned matrix is also obtained. Finally, some numerical experiments are presented to illustrate the effectiveness of the presented preconditioner.  相似文献   

13.
In this paper, we propose a numerical method to verify for nearly multiple eigenvalues of a Hermitian matrix not being strictly multiple eigenvalues. From approximate eigenvalues computed, it seems to be difficult to distinguish whether they are strictly multiple eigenvalues or simple ones, and if they are very close each other, the verification method for simple eigenvalues may fail to enclose them separately, because of singularity of the system in the verification. There are several methods for enclosing multiple and nearly multiple eigenvalues (e.g., [Rump, Computational error bounds for multiple or nearly multiple eigenvalues, Linear Algebra Appl. 324 (2001) 209–226]), For such cases, there is no result to decide the enclosed eigenvalues are nearly multiple or strictly multiple, up to now. So, for enclosed eigenvalues, we propose a numerical method to separate nearly multiple eigenvalues.  相似文献   

14.
The well-known Lyapunov's theorem in matrix theory / continuous dynamical systems asserts that a (complex) square matrix A is positive stable (i.e., all eigenvalues lie in the open right-half plane) if and only if there exists a positive definite matrix X such that AX+XA* is positive definite. In this paper, we prove a complementarity form of this theorem: A is positive stable if and only if for any Hermitian matrix Q, there exists a positive semidefinite matrix X such that AX+XA*+Q is positive semidefinite and X[AX+XA*+Q]=0. By considering cone complementarity problems corresponding to linear transformations of the form IS, we show that a (complex) matrix A has all eigenvalues in the open unit disk of the complex plane if and only if for every Hermitian matrix Q, there exists a positive semidefinite matrix X such that XAXA*+Q is positive semidefinite and X[XAXA*+Q]=0. By specializing Q (to −I), we deduce the well known Stein's theorem in discrete linear dynamical systems: A has all eigenvalues in the open unit disk if and only if there exists a positive definite matrix X such that XAXA* is positive definite.  相似文献   

15.
非Hermite线性方程组在科学和工程计算中有着重要的理论研究意义和使用价值,因此如何高效求解该类线性方程组,一直是研究者所探索的方向.通过提出一种预处理方法,对非Hermite线性方程组和具有多个右端项的复线性方程组求解的若干迭代算法进行预处理,旨在提高原算法的收敛速度.最后通过数值试验表明,所提出的若干预处理迭代算法与原算法相比较,预处理算法迭代次数大大降低,且收敛速度明显优于原算法.除此之外,广义共轭A-正交残量平方法(GCORS2)的预处理算法与其他算法相比,具有良好的收敛性行为和较好的稳定性.  相似文献   

16.
The parameterized Uzawa preconditioners for saddle point problems are studied in this paper. The eigenvalues of the preconditioned matrix are located in (0, 2) by choosing the suitable parameters. Furthermore, we give two strategies to optimize the rate of convergence by finding the suitable values of parameters. Numerical computations show that the parameterized Uzawa preconditioners can lead to practical and effective preconditioned GMRES methods for solving the saddle point problems.  相似文献   

17.
Using the equivalent block two-by-two real linear systems and relaxing technique, we establish a new block preconditioner for a class of complex symmetric indefinite linear systems. The new preconditioner is much closer to the original block two-by-two coefficient matrix than the Hermitian and skew-Hermitian splitting (HSS) preconditioner. We analyze the spectral properties of the new preconditioned matrix, discuss the eigenvalue distribution and derive an upper bound for the degree of its minimal polynomial. Finally, some numerical examples are provided to show the effectiveness and robustness of our proposed preconditioner.  相似文献   

18.
The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.  相似文献   

19.
Summary. In [10,14], circulant-type preconditioners have been proposed for ill-conditioned Hermitian Toeplitz systems that are generated by nonnegative continuous functions with a zero of even order. The proposed circulant preconditioners can be constructed without requiring explicit knowledge of the generating functions. It was shown that the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers and that all eigenvalues are uniformly bounded away from zero. Therefore the conjugate gradient method converges linearly when applied to solving the circulant preconditioned systems. In [10,14], it was claimed that this result can be the case where the generating functions have multiple zeros. The main aim of this paper is to give a complete convergence proof of the method in [10,14] for this class of generating functions. Received October 19, 1999 / Revised version received May 2, 2001 / Published online October 17, 2001  相似文献   

20.
Some draining or coating fluid‐flow problems and problems concerning the flow of thin films of viscous fluid with a free surface can be described by third‐order ordinary differential equations (ODEs). In this paper, we solve the boundary value problems of such equations by sinc discretization and prove that the discrete solutions converge to the true solutions of the ODEs exponentially. The discrete solution is determined by a linear system with the coefficient matrix being a combination of Toeplitz and diagonal matrices. The system can be effectively solved by Krylov subspace iteration methods, such as GMRES, preconditioned by banded matrices. We demonstrate that the eigenvalues of the preconditioned matrix are uniformly bounded within a rectangle on the complex plane independent of the size of the linear system. Numerical examples are given to illustrate the effective performance of our method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号