首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a computational technique for Fredholm integral equation of the second kind and Volterra integral equation of the second kind. The method is based upon Haar functions approximation. Properties of Rationalized Haar functions are first presented, the operational matrix of integration together with product operational matrix and Newton–Cotes nodes are utilized to reduce the computation of integral equations into some algebraic equations. The method is computationally attractive and applications are demonstrated through illustrative examples.  相似文献   

2.
We study the paper of Avazzadeh et al. [Z. Avazzadeh, M. Heydari, G.B., Loghmani, Numerical solution of Fedholm integral equations of the second kind by using integral mean value theorem, Appl. Math. Model. 35 (2011) 2374–2383] with the integral mean value method for Fredholm integral equations of the second kind. The objective of the note is threefold. First, we point out a basic error in the paper. Second, we find that the given numerical examples are only related to the special cases of Fredholm integral equations of the second kind with the degenerate kernels, which can be solved simply. Third, due to the basic error, our observations reveal that generally the suggested method should not be considered for a Fredholm integral equation of the second kind.  相似文献   

3.
In this paper, we present a new semi-analytical method for solving linear and nonlinear Fredholm integral and integro-differential equations of the second kind and the systems including them. The main idea in this method is applying the mean value theorem for integrals. Some examples are presented to show the ability of the model. The results confirm that the method is very effective and simple.  相似文献   

4.
第二类Fredholm积分方程的泰勒展开解法   总被引:3,自引:0,他引:3  
本进一步发展了用Taylor公式求解第二类Fredholm积分方程的方法,并给出了近似解的误差精度分析.  相似文献   

5.
In this work, we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels. Particularly, we consider the case when the underlying solutions are sufficiently smooth. In this case, the proposed method leads to a fully discrete linear system. We show that the fully discrete integral operator is stable in both infinite and weighted square norms. Furthermore, we establish that the approximate solution arrives at an optimal convergence order under the two norms. Finally, we give some numerical examples, which confirm the theoretical prediction of the exponential rate of convergence.  相似文献   

6.
In this paper the technique of subtracting out singularities is used to derive explicit and implicit product Euler schemes with order one convergence and a product trapezoidal scheme with order two convergence for a system of Volterra integral equations with a weakly singular kernel. The convergence proofs of the numerical schemes are presented; these are nonstandard since the nonlinear function involved in the integral equation system does not satisfy a global Lipschitz condition.  相似文献   

7.
In this paper, a novel meshless technique termed the random integral quadrature (RIQ) method is developed for the numerical solution of the second kind of the Volterra integral equations. The RIQ method is based on the generalized integral quadrature (GIQ) technique, and associated with the Kriging interpolation function, such that it is regarded as an extension of the GIQ technique. In the GIQ method, the regular computational domain is required, in which the field nodes are scattered along straight lines. In the RIQ method however, the field nodes can be distributed either uniformly or randomly. This is achieved by discretizing the governing integral equation with the GIQ method over a set of virtual nodes that lies along straight lines, and then interpolating the function values at the virtual nodes over all the field nodes which are scattered either randomly or uniformly. In such a way, the governing integral equation is converted approximately into a system of linear algebraic equations, which can be easily solved.  相似文献   

8.
Based on a new generalization of discrete Gronwall inequality in [L. Tao, H. Yong, A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equality of the second kind, J. Math. Anal. Appl. 282 (2003) 56-62], Navot's quadrature rule for computing integrals with the end point singularity in [I. Navot, A further extension of Euler-Maclaurin summation formula, J. Math. Phys. 41 (1962) 155-184] and a transformation in [P. Baratella, A. Palamara Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004) 401-418], a new quadrature method for solving nonlinear weakly singular Volterra integral equations of the second kind is presented. The convergence of the approximation solution and the asymptotic expansion of the error are proved, so by means of the extrapolation technique we not only obtain a higher accuracy order of the approximation but also get a posteriori estimate of the error.  相似文献   

9.
A method of converting nonlinear Volterra equations to systems of ordinary differential equations is compared with a standard technique, themethod of moments, for linear Fredholm equations. The method amounts to constructing a Galerkin approximation when the kernel is either finitely decomposable or approximated by a certain Fourier sum. Numerical experiments from recent work by Bownds and Wood serve to compare several standard approximation methods as they apply to smooth kernels. It is shown that, if the original kernel decomposes exactly, then the method produces a numerical solution which is as accurate as the method used to solve the corresponding differential system. If the kernel requires an approximation, the error is greater, but in examples seems to be around 0.5% for a reasonably small number of approximating terms. In any case, the problem of excessive kernel evaluations is circumvented by the conversion to the system of ordinary differential equations.  相似文献   

10.
In a recent paper (Allouch, in press) [5] on one dimensional integral equations of the second kind, we have introduced new collocation methods. These methods are based on an interpolatory projection at Gauss points onto a space of discontinuous piecewise polynomials of degree rr which are inspired by Kulkarni’s methods (Kulkarni, 2003) [10], and have been shown to give a 4r+44r+4 convergence for suitable smooth kernels. In this paper, these methods are extended to multi-dimensional second kind equations and are shown to have a convergence of order 2r+42r+4. The size of the systems of equations that must be solved in implementing these methods remains the same as for Kulkarni’s methods. A two-grid iteration convergent method for solving the system of equations based on these new methods is also defined.  相似文献   

11.
In this paper, we propose a multi-projection and iterated multi-projection methods for Fredholm integral equations of the second kind with a smooth kernel using polynomial bases. We obtain super-convergence rates for the approximate solutions, more precisely, we prove that in M-Galerkin and M-collocation methods not only iterative solution approximates the exact solution u in the supremum norm with the order of convergence n-4k, but also the derivatives of approximate the corresponding derivatives of u in the supremum norm with the same order of convergence, n being the degree of polynomial approximation and k being the smoothness of the kernel.  相似文献   

12.
The Gauss product quadrature rules and collocation method are applied to reduce the second-kind nonlinear two-dimensional Fredholm integral equations (FIE) to a nonlinear system of equations. The convergence of the proposed numerical method is proved under certain conditions on the kernel of the integral equation. An iterative method for approximating the solution of the obtained nonlinear system is provided and its convergence is proved. Also, some numerical examples are presented to show the efficiency and accuracy of the proposed method.  相似文献   

13.
An initial-value method of Bownds for solving Volterra integral equations is reexamined using a variable-step integrator to solve the differential equations. It is shown that such equations may be easily solved to an accuracy ofO(10–8), the error depending essentially on that incurred in truncating expansions of the kernel to a degenerate one.This work was sponsored by a University of Nevada at Las Vegas Research Grant.  相似文献   

14.
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性.  相似文献   

15.
In this paper, an algorithm based on the regularization and integral mean value methods, to handle the ill-posed multi-dimensional Fredholm equations, is introduced. The application of this algorithm is based on the transforming the first kind equation to a second kind equation by the regularization method. Then, by converting the first kind to a second kind, the integral mean value method is employed to handle the resulting Fredholm integral equations of the second kind. The efficiency of the approach will be shown by applying the procedure on some examples.  相似文献   

16.
This paper presents an efficient numerical method for finding solutions of the nonlinear Fredholm integral equations system of second kind based on Bernstein polynomials basis. The numerical results obtained by the present method have been compared with those obtained by B‐spline wavelet method. This proposed method reduces the system of integral equations to a system of algebraic equations that can be solved easily any of the usual numerical methods. Numerical examples are presented to illustrate the accuracy of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail.  相似文献   

18.
We develop a new approach to the theory and numerical solution of a class of linear and nonlinear Fredholm equations. These equations, which have semidegenerate kernels, are shown to be equivalent to two-point boundary-value problems for a system of ordinary differential equations. Applications of numerical methods for this class of problems allows us to develop a new class of numerical algorithms for the original integral equation. The scope of the paper is primarily theoretical; developing the necessary Fredholm theory and giving comparisons with related methods. For convolution equations, the theory is related to that of boundary-value problems in an appropriate Hilbert space. We believe that the results here have independent interest. In the last section, our methods are extended to certain classes of integrodifferential equations.  相似文献   

19.
In this paper, we use operational matrices of piecewise constant orthogonal functions on the interval [0,1)[0,1) to solve Volterra integral and integro-differential equations of convolution type without solving any system. We first obtain Laplace transform of the problem and then we find numerical inversion of Laplace transform by operational matrices. Numerical examples show that the approximate solutions have a good degree of accuracy.  相似文献   

20.
In this paper, we comment on the recent papers by Yuhe Ren et al. (1999) [1] and Maleknejad et al. (2006) [7] concerning the use of the Taylor series to approximate a solution of the Fredholm integral equation of the second kind as well as a solution of a system of Fredholm equations. The technique presented in Yuhe Ren et al. (1999) [1] takes advantage of a rapidly decaying convolution kernel k(|st|) as |st| increases. However, it does not apply to equations having other types of kernels. We present in this paper a more general Taylor expansion method which can be applied to approximate a solution of the Fredholm equation having a smooth kernel. Also, it is shown that when the new method is applied to the Fredholm equation with a rapidly decaying kernel, it provides more accurate results than the method in Yuhe Ren et al. (1999) [1]. We also discuss an application of the new Taylor-series method to a system of Fredholm integral equations of the second kind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号