首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper examines a new problem in the irregular packing literature that has many applications in industry: two-dimensional irregular (convex) bin packing with guillotine constraints. Due to the cutting process of certain materials, cuts are restricted to extend from one edge of the stock-sheet to another, called guillotine cutting. This constraint is common place in glass cutting and is an important constraint in two-dimensional cutting and packing problems. In the literature, various exact and approximate algorithms exist for finding the two dimensional cutting patterns that satisfy the guillotine cutting constraint. However, to the best of our knowledge, all of the algorithms are designed for solving rectangular cutting where cuts are orthogonal with the edges of the stock-sheet. In order to satisfy the guillotine cutting constraint using these approaches, when the pieces are non-rectangular, practitioners implement a two stage approach. First, pieces are enclosed within rectangle shapes and then the rectangles are packed. Clearly, imposing this condition is likely to lead to additional waste. This paper aims to generate guillotine-cutting layouts of irregular shapes using a number of strategies. The investigation compares three two-stage approaches: one approximates pieces by rectangles, the other two approximate pairs of pieces by rectangles using a cluster heuristic or phi-functions for optimal clustering. All three approaches use a competitive algorithm for rectangle bin packing with guillotine constraints. Further, we design and implement a one-stage approach using an adaptive forest search algorithm. Experimental results show the one-stage strategy produces good solutions in less time over the two-stage approach.  相似文献   

2.
In this paper, we examine the two-dimensional variable-sized bin packing problem (2DVSBPP), where the task is to pack all given rectangles into bins of various sizes such that the total area of the used bins is minimized. We partition the search space of the 2DVSBPP into sets and impose an order on the sets, and then use a goal-driven approach to take advantage of the special structure of this partitioned solution space. Since the 2DVSBPP is a generalization of the two-dimensional bin packing problem (2DBPP), our approach can be adapted to the 2DBPP with minimal changes. Computational experiments on the standard benchmark data for both the 2DVSBPP and 2DBPP shows that our approach is more effective than existing approaches in literature.  相似文献   

3.
This paper studies a variant of the three-dimensional bin packing problem (3D-BPP), where the bin height can be adjusted to the cartons it packs. The bins and cartons to be packed are assumed rectangular in shape. The cartons are allowed to be rotated into any one of the six positions that keep the carton edges parallel to the bin edges. This greatly increases the difficulty of finding a good solution since the search space expands significantly comparing to the 3D-BPP where the cartons have fixed orientations. A mathematical (mixed integer programming) approach is modified based on [Chen, C. S., Lee, S. M., Shen, Q. S., 1995. An analytical model for the container loading problem. European Journal of Operational Research 80 (1), 68–76] and numerical experiments indicate that the mathematical approach is not suitable for the variable bin height 3D-BPP. A special bin packing algorithm based on packing index is designed to utilize the special problem feature and is used as a building block for a genetic algorithm designed for the 3D-BPP. The paper also investigates the situation where more than one type of bin are used and provides a heuristic for packing a batch of cartons using the genetic algorithm. Numerical experiments show that our proposed method yields quick and satisfactory results when benchmarked against the actual packing practice and the MIP model with the latest version of CPLEX.  相似文献   

4.
The two-dimensional orthogonal packing problem (2OPP) consists in determining if a set of rectangles (items) can be packed into one rectangle of fixed size (bin). In this paper we propose two exact algorithms for solving this problem. The first algorithm is an improvement on a classical branch&bound method, whereas the second algorithm is based on a new relaxation of the problem. We also describe reduction procedures and lower bounds which can be used within enumerative methods. We report computational experiments for randomly generated benchmarks which demonstrate the efficiency of both methods: the second method is competitive compared to the best previous methods. It can be seen that our new relaxation allows an efficient detection of non-feasible instances.  相似文献   

5.
Cutting and packing problems have been extensively studied in the literature in recent decades, mainly due to their numerous real-world applications while at the same time exhibiting intrinsic computational complexity. However, a major limitation has been the lack of problem generators that can be widely and commonly used by all researchers in their computational experiments. In this paper, a problem generator for every type of two-dimensional rectangular cutting and packing problems is proposed. The problems are defined according to the recent typology for cutting and packing problems proposed by Wäscher, Haußner, and Schumann (2007) and the relevant problem parameters are identified. The proposed problem generator can significantly contribute to the quality of the computational experiments run with cutting and packing problems and therefore will help improve the quality of the papers published in this field.  相似文献   

6.
This paper presents a hybrid placement strategy for the three-dimensional strip packing problem which involves packing a set of cuboids (‘boxes’) into a three-dimensional bin (parallelepiped) of fixed width and height but unconstrained length (the ‘container’). The goal is to pack all of the boxes into the container, minimising its resulting length. This problem has potential industry application in stock cutting (wood, polystyrene, etc. – minimising wastage) and also cargo loading, as well as other applications in areas such as multi-dimensional resource scheduling. In addition to the proposed strategy a number of test results on available literature benchmark problems are presented and analysed. The results of empirical testing of the algorithm show that it out-performs other methods from the literature, consistently in terms of speed and solution quality-producing 28 best known results from 35 test cases.  相似文献   

7.
We propose an exact lexicographic dynamic programming pricing algorithm for solving the Fractional Bin Packing Problem with column generation. The new algorithm is designed for generating maximal columns of minimum reduced cost which maximize, lexicographically, one of the measures of maximality we investigate. Extensive computational experiments reveal that a column generation algorithm based on this pricing technique can achieve a substantial reduction in the number of columns and the computing time, also when combined with a classical smoothing technique from the literature.  相似文献   

8.
This paper studies the circular packing problem (CPP) which consists of packing n non-identical circles Ci of known radius ri, i ∈ N = {1, … , n}, into the smallest containing circle C. The objective is to determine the coordinates (xiyi) of the center of Ci, i ∈ N, as well as the radius r and center (xy) of C. This problem, which is a variant of the two-dimensional open dimension problem, is solved using a two-step, dynamic, adaptive, local search algorithm. At each iteration, the algorithm identifies the set of potential “best local positions” of a circle Ci, i ∈ N, given the positions of the previously packed circles, and determines for each of these positions the coordinates and radius of the smallest containing circle. The “best local position” minimizes the radius of the current containing circle. That is, every time an additional circle is packed, both the center and the radius of the containing circle are dynamically updated, and the smallest containing circle is known. The experimental results reflect the good performance of the algorithm.  相似文献   

9.
In this paper, we propose a greedy heuristic for the 2D rectangular packing problem (2DRP) that represents packings using a skyline; the use of this heuristic in a simple tabu search approach outperforms the best existing approach for the 2DRP on benchmark test cases. We then make use of this 2DRP approach as a subroutine in an “iterative doubling” binary search on the height of the packing to solve the 2D rectangular strip packing problem (2DSP). This approach outperforms all existing approaches on standard benchmark test cases for the 2DSP.  相似文献   

10.
This paper addresses the problem of determining stowage plansfor containers in a ship, referred to as the Master Bay PlanProblem (MBPP). MBPP is NP-complete. We present a heuristic method for solvingMBPP based on its relation with the three-dimensional bin packingproblem (3D-BPP), where items are containers and bins are differentportions of the ship. Our aim is to find stowage plans, takinginto account structural and operational constraints relatedto both the containers and the ship, that minimize the timerequired for loading all containers on board. A validation of the proposed approach with some test casesis given. The results of real instances of the problem involvingmore than 1400 containers show the effectiveness of the proposedapproach for large scale applications.  相似文献   

11.
We consider a bin packing problem where the number of different object weights is fixed to C. We analyze a simple approximate approach and show that it leads to an asymptotically exact polynomial algorithm with absolute error 0 if C = 2, at most 1 if 1 < C ? 6, and at most 1 + ⌊(C − 1)/3⌋ if C > 6. A consequence of our analysis is a new upper bound on the gap between the optimal value of the problem at hand and the round-up of the optimal value of the linear relaxation of its Gilmore–Gomory formulation.  相似文献   

12.
This paper considers variants of the one-dimensional bin packing (and stock cutting) problem in which both the ordering and orientation of items in a container influences the validity and quality of a solution. Two new real-world problems of this type are introduced, the first that involves the creation of wooden trapezoidal-shaped trusses for use in the roofing industry, the second that requires the cutting and scoring of rectangular pieces of cardboard in the construction of boxes. To tackle these problems, two variants of a local search-based approximation algorithm are proposed, the first that attempts to determine item ordering and orientation via simple heuristics, the second that employs more accurate but costly branch-and-bound procedures. We investigate the inevitable trade-off between speed and accuracy that occurs with these variants and highlight the circumstances under which each scheme is advantageous.  相似文献   

13.
We examine the 2D strip packing problems with guillotine-cut constraint, where the objective is to pack all rectangles into a strip with fixed width and minimize the total height of the strip. We combine three most successful ideas for the orthogonal rectangular packing problems into a single coherent algorithm: (1) packing a block of rectangles instead of a single rectangle in each step; (2) dividing the strip into layers and pack layer by layer; and (3) unrolling and repacking the top portion of the solutions where usually wasted space occurs. Computational experiments on benchmark test sets suggest that our approach rivals existing approaches.  相似文献   

14.
In this paper we address a two-dimensional (2D) orthogonal packing problem, where a fixed set of small rectangles has to be placed on a larger stock rectangle in such a way that the amount of trim loss is minimized. The algorithm we propose hybridizes a placement procedure with a genetic algorithm based on random keys. The approach is tested on a set of instances taken from the literature and compared with other approaches. The computation results validate the quality of the solutions and the effectiveness of the proposed algorithm.  相似文献   

15.
The Two-Dimensional Finite Bin Packing Problem (2BP) consists of determining the minimum number of large identical rectangles, bins, that are required for allocating without overlapping a given set of rectangular items. The items are allocated into a bin with their edges always parallel or orthogonal to the bin edges. The problem is strongly NP-hard and finds many practical applications. In this paper we describe new lower bounds for the 2BP where the items have a fixed orientation and we show that the new lower bounds dominate two lower bounds proposed in the literature. These lower bounds are extended in Part II (see Boschetti and Mingozzi 2002) for a more general version of the 2BP where some items can be rotated by . Moreover, in Part II a new heuristic algorithm for solving both versions of the 2BP is presented and computational results on test problems from the literature are given in order to evaluate the effectiveness of the proposed lower bounds.  相似文献   

16.
We consider a generalized one-dimensional bin packing model in which the cost of a bin is a nondecreasing concave function of the utilization of the bin. We show that for any given positive constant ?, there exists a polynomial-time approximation algorithm with an asymptotic worst-case performance ratio of no more than 1 + ?.  相似文献   

17.
This paper proposes an adaptation, to the two-dimensional irregular bin packing problem of the Djang and Finch heuristic (DJD), originally designed for the one-dimensional bin packing problem. In the two-dimensional case, not only is it the case that the piece’s size is important but its shape also has a significant influence. Therefore, DJD as a selection heuristic has to be paired with a placement heuristic to completely construct a solution to the underlying packing problem. A successful adaptation of the DJD requires a routine to reduce computational costs, which is also proposed and successfully tested in this paper. Results, on a wide variety of instance types with convex polygons, are found to be significantly better than those produced by more conventional selection heuristics.  相似文献   

18.
We investigate a cooperative game with two types of players envolved: Every player of the first type owns a unit size bin, and every player of the second type owns an item of size at most one. The value of a coalition of players is defined to be the maximum overall size of packed items over all packings of the items owned by the coalition into the bins owned by the coalition.We prove that for=1/3 this cooperative bin packing game is-balanced in the taxation model of Faigle and Kern (1993).This research was supported by the Christian Doppler Laboratorium für Diskrete Optimierung.  相似文献   

19.
20.
The three-dimensional finite bin packing problem (3BP) consists of determining the minimum number of large identical three-dimensional rectangular boxes, bins, that are required for allocating without overlapping a given set of three-dimensional rectangular items. The items are allocated into a bin with their edges always parallel or orthogonal to the bin edges. The problem is strongly NP-hard and finds many practical applications. We propose new lower bounds for the problem where the items have a fixed orientation and then we extend these bounds to the more general problem where for each item the subset of rotations by 90° allowed is specified. The proposed lower bounds have been evaluated on different test problems derived from the literature. Computational results show the effectiveness of the new lower bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号