首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
焦红伟  陈永强 《应用数学》2008,21(2):270-276
本文对一类非凸规划问题(NP)给出一确定性全局优化算法.这类问题包括:在非凸的可行域上极小化有限个带指数的线性函数乘积的和与差,广义线性多乘积规划,多项式规划等.通过利用等价问题和线性化技巧提出的算法收敛到问题(NP)的全局极小.  相似文献   

2.
In this paper, by solving the relaxed quasiconcave programming problem in outcome space, a new global optimization algorithm for convex multiplicative programming is presented. Two kinds of techniques are employed to establish the algorithm. The first one is outer approximation technique which is applied to shrink relaxation area of quasiconcave programming problem and to compute appropriate feasible points and to raise the capacity of bounding. And the other one is branch and bound technique which is used to guarantee global optimization. Some numerical results are presented to demonstrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

3.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

4.
Sequential quadratic programming (SQP) has been one of the most important methods for solving nonlinearly constrained optimization problems. In this paper, we present and study an active set SQP algorithm for inequality constrained optimization. The active set technique is introduced which results in the size reduction of quadratic programming (QP) subproblems. The algorithm is proved to be globally convergent. Thus, the results show that the global convergence of SQP is still guaranteed by deleting some “redundant” constraints.  相似文献   

5.
Multiplicative programming problems are difficult global optimization problems known to be NP-hard. At the same time, these problems have some important applications in engineering, finance, economics, and other fields. This article has two purposes. The first is to present an analysis that shows several relationships between concave multiplicative programs and concave minimization problems, and between concave multiplicative programs and certain multiple-objective mathematical programs. The second purpose is to propose and report computational results for a heuristic efficient-point search algorithm that we have designed for use on linear multiplicative programming problems. To our knowledge, this is the first heuristic algorithm of its type. The theoretical and algorithmic results given in the article offer some potentially important new avenues for analyzing and solving multiplicative programming problems of various types.  相似文献   

6.
Signomial geometric programming (SGP) has been an interesting problem for many authors recently. Many methods have been provided for finding locally optimal solutions of SGP, but little progress has been made for global optimization of SGP. In this paper we propose a new accelerating method for global optimization algorithm of SGP using a suitable deleting technique. This technique offers a possibility to cut away a large part of the currently investigated region in which the globally optimal solution of SGP does not exist, and can be seen as an accelerating device for global optimization algorithm of SGP problem. Compared with the method of Shen and Zhang [Global optimization of signomial geometric programming using linear relaxation, Appl. Math. Comput. 150 (2004) 99–114], numerical results show that the computational efficiency is improved obviously by using this new technique in the number of iterations, the required saving list length and the execution time of the algorithm.  相似文献   

7.
To globally solve linear multiplicative programming problem (LMP), this paper presents a practicable branch-and-bound method based on the framework of branch-and-bound algorithm. In this method, a new linear relaxation technique is proposed firstly. Then, the branch-and-bound algorithm is developed for solving problem LMP. The proposed algorithm is proven that it is convergent to the global minimum by means of the subsequent solutions of a series of linear programming problems. Some experiments are reported to show the feasibility and efficiency of this algorithm.  相似文献   

8.
In this paper, a global optimization algorithm is proposed for solving sum of generalized polynomial ratios problem (P) which arises in various practical problems. Due to its intrinsic difficulty, less work has been devoted to globally solve the problem (P). For such problems, we present a branch and bound algorithm. In this method, by utilizing exponent transformation and new three-level linear relaxation method, a sequence of linear relaxation programming of the initial nonconvex programming problem (P) are derived which are embedded in a branch and bound algorithm. The proposed method need not introduce new variables and constraints and it is convergent to the global minimum of prime problem by means of the subsequent solutions of a series of linear programming problems. Several numerical examples in the literatures are tested to demonstrate that the proposed algorithm can systematically solve these examples to find the approximate ?-global optimum.  相似文献   

9.
A class of branch-and-bound methods is proposed for minimizing a quasiconvex-concave function subject to convex and quasiconvex-concave inequality constraints. Several important special cases where the subproblems involved by the bounding-and-branching operations can be solved quite effectively include certain d.c. programming problems, indefinite quadratic programming with one negative eigenvalue, affine multiplicative problems, and fractional multiplicative optimization.This research was accomplished while the second author was a Fellow of the Alexander von Humboldt Foundation at the University of Trier, Trier, Germany.  相似文献   

10.
We show the importance of exploiting the complementary convex structure for efficiently solving a wide class of specially structured nonconvex global optimization problems. Roughly speaking, a specific feature of these problems is that their nonconvex nucleus can be transformed into a complementary convex structure which can then be shifted to a subspace of much lower dimension than the original underlying space. This approach leads to quite efficient algorithms for many problems of practical interest, including linear and convex multiplicative programming problems, concave minimization problems with few nonlinear variables, bilevel linear optimization problems, etc...  相似文献   

11.
In this paper, we first establish some sufficient and some necessary global optimality conditions for quadratic integer programming problems. Then we present a new local optimization method for quadratic integer programming problems according to its necessary global optimality conditions. A new global optimization method is proposed by combining its sufficient global optimality conditions, local optimization method and an auxiliary function. The numerical examples are also presented to show that the proposed optimization methods for quadratic integer programming problems are very efficient and stable.  相似文献   

12.
半定规划的近似中心投影法   总被引:2,自引:1,他引:2  
何炳生 《计算数学》1998,20(2):175-176
1.引言半定规划问题标准形的数学形式是这里C,AIEIR”””及变量XEIRn“”为对称矩阵,Tr(·)表示矩阵的迹,用符号>0和三0分别表示矩阵正定和半正定.由于半定规划在控制论,结构优化,组合优化方面有重要应用[1,3,16,17]以及线性规划内点法取得的巨大成就[7],将线性规划的内点法推广到半定规划上,是数学规划领域内近年来受到重视的一个研究课题.线性规划内点法中的势函数下降法[10,16]原始对偶中心路径跟踪法[2,4,8,9,11。15]已经先后被推广到半定规划上.ROOS-Visl近似中心法则是求解线性规划的另一类内…  相似文献   

13.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

14.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

15.
基于粒子群算法的非线性二层规划问题的求解算法   总被引:3,自引:0,他引:3  
粒子群算法(Particle Swarm Optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO通过粒子追随自己找到的最好解和整个群的最好解来完成优化。该算法简单易实现,可调参数少,已得到了广泛研究和应用。本文根据该算法能够有效的求出非凸数学规划全局最优解的特点,对非线性二层规划的上下层问题求解,并根据二层规划的特点,给出了求解非线性二层规划问题全局最优解的有效算法。数值计算结果表明该算法有效。  相似文献   

16.
This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality.  相似文献   

17.
在这篇论文里,有机地把外逼近方法与分枝定界技术结合起来,提出了解带有二次约束非凸二次规划问题的一个分枝缩减方法;给出了原问题的一个新的线性规划松弛,以便确定它在超矩形上全局最优值的一个下界;利用超矩形的一个深度二级剖分方法,以及超矩形的缩减和删除技术,提高算法的收敛速度;证明了在知道原问题可行点的条件下,该算法在有限步里就可以获得原问题的一个全局最优化解,并且用一个例子说明了该算法是有效的.  相似文献   

18.
Multiplicative programming problems are global optimisation problems known to be NP-hard. In this paper we propose an objective space cut and bound algorithm for approximately solving convex multiplicative programming problems. This method is based on an objective space approximation algorithm for convex multi-objective programming problems. We show that this multi-objective optimisation algorithm can be changed into a cut and bound algorithm to solve convex multiplicative programming problems. We use an illustrative example to demonstrate the working of the algorithm. Computational experiments illustrate the superior performance of our algorithm compared to other methods from the literature.  相似文献   

19.
In this paper, we present the derivation of the multiparametric disaggregation technique (MDT) by Teles et al. (J. Glob. Optim., 2011) for solving nonconvex bilinear programs. Both upper and lower bounding formulations corresponding to mixed-integer linear programs are derived using disjunctive programming and exact linearizations, and incorporated into two global optimization algorithms that are used to solve bilinear programming problems. The relaxation derived using the MDT is shown to scale much more favorably than the relaxation that relies on piecewise McCormick envelopes, yielding smaller mixed-integer problems and faster solution times for similar optimality gaps. The proposed relaxation also compares well with general global optimization solvers on large problems.  相似文献   

20.
This paper addresses the problem of minimizing an arbitrary finite sum of products of two convex functions over a convex set. Nonconvex problems in this form constitute a class of generalized convex multiplicative problems. Convex analysis results allow to reformulate the problem as an indefinite quadratic problem with infinitely many linear constraints. Special properties of the quadratic problem combined with an adequate outer approximation procedure for handling its semi-infinite constrained set enable an efficient constraint enumeration global optimization algorithm for generalized convex multiplicative programs. Computational experiences illustrate the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号