共查询到20条相似文献,搜索用时 15 毫秒
1.
Additive efficiency decomposition in two-stage DEA 总被引:1,自引:0,他引:1
Kao and Hwang (2008) [Kao, C., Hwang, S.-N., 2008. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research 185 (1), 418–429] develop a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are referred to as intermediate measures. The second stage then uses these intermediate measures to produce outputs. Kao and Huang represent the efficiency of the overall process as the product of the efficiencies of the two stages. A major limitation of this model is its applicability to only constant returns to scale (CRS) situations. The current paper develops an additive efficiency decomposition approach wherein the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This approach can be applied under both CRS and variable returns to scale (VRS) assumptions. The case of Taiwanese non-life insurance companies is revisited using this newly developed approach. 相似文献
2.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently DEA has been extended to examine the efficiency of two-stage processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model provides not only an overall efficiency score for the entire process, but as well yields an efficiency score for each of the individual stages. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs by the efficiency scores, as in the standard DEA approach, does not necessarily yield a frontier projection. The current paper develops an approach for determining the frontier points for inefficient DMUs within the framework of two-stage DEA. 相似文献
3.
DEA model with shared resources and efficiency decomposition 总被引:2,自引:0,他引:2
Data envelopment analysis (DEA) has proved to be an excellent approach for measuring performance of decision making units (DMUs) that use multiple inputs to generate multiple outputs. In many real world scenarios, DMUs have a two-stage network process with shared input resources used in both stages of operations. For example, in hospital operations, some of the input resources such as equipment, personnel, and information technology are used in the first stage to generate medical record to track treatments, tests, drug dosages, and costs. The same set of resources used by first stage activities are used to generate the second-stage patient services. Patient services also use the services generated by the first stage operations of housekeeping, medical records, and laundry. These DMUs have not only inputs and outputs, but also intermediate measures that exist in-between the two-stage operations. The distinguishing characteristic is that some of the inputs to the first stage are shared by both the first and second stage, but some of the shared inputs cannot be conveniently split up and allocated to the operations of the two stages. Recognizing this distinction is critical for these types of DEA applications because measuring the efficiency of the production for first-stage outputs can be misleading and can understate the efficiency if DEA fails to consider that some of the inputs generate other second-stage outputs. The current paper develops a set of DEA models for measuring the performance of two-stage network processes with non splittable shared inputs. An additive efficiency decomposition for the two-stage network process is presented. The models are developed under the assumption of variable returns to scale (VRS), but can be readily applied under the assumption of constant returns to scale (CRS). An application is provided. 相似文献
4.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs), where the internal structures of DMUs are treated as a black-box. Recently DEA has been extended to examine the efficiency of DMUs that have two-stage network structures or processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model not only provides an overall efficiency score for the entire process, but also yields an efficiency score for each of the individual stages. The current paper develops a Nash bargaining game model to measure the performance of DMUs that have a two-stage structure. Under Nash bargaining theory, the two stages are viewed as players and the DEA efficiency model is a cooperative game model. It is shown that when only one intermediate measure exists between the two stages, our newly developed Nash bargaining game approach yields the same results as applying the standard DEA approach to each stage separately. Two real world data sets are used to demonstrate our bargaining game model. 相似文献
5.
Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently network DEA models been developed to examine the efficiency of DMUs with internal structures. The internal network structures range from a simple two-stage process to a complex system where multiple divisions are linked together with intermediate measures. In general, there are two types of network DEA models. One is developed under the standard multiplier DEA models based upon the DEA ratio efficiency, and the other under the envelopment DEA models based upon production possibility sets. While the multiplier and envelopment DEA models are dual models and equivalent under the standard DEA, such is not necessarily true for the two types of network DEA models. Pitfalls in network DEA are discussed with respect to the determination of divisional efficiency, frontier type, and projections. We point out that the envelopment-based network DEA model should be used for determining the frontier projection for inefficient DMUs while the multiplier-based network DEA model should be used for determining the divisional efficiency. Finally, we demonstrate that under general network structures, the multiplier and envelopment network DEA models are two different approaches. The divisional efficiency obtained from the multiplier network DEA model can be infeasible in the envelopment network DEA model. This indicates that these two types of network DEA models use different concepts of efficiency. We further demonstrate that the envelopment model’s divisional efficiency may actually be the overall efficiency. 相似文献
6.
Gholam Reza Jahanshahloo Hélcio Vieira Junior Farhad Hosseinzadeh Lotfi Darush Akbarian 《European Journal of Operational Research》2007
This research proposes a new ranking system for extreme efficient DMUs (Decision Making Units) based upon the omission of these efficient DMUs from reference set of the inefficient DMUs. We state and prove some facts related to our model. A numerical example where the proposed method is compared with traditional ranking approaches is shown. 相似文献
7.
Choosing weights from alternative optimal solutions of dual multiplier models in DEA 总被引:1,自引:0,他引:1
In this paper we propose a two-step procedure to be used for the selection of the weights that we obtain from the multiplier model in a DEA efficiency analysis. It is well known that optimal solutions of the envelopment formulation for extreme efficient units are often highly degenerate and, consequently, have alternate optima for the weights. Different optimal weights may then be obtained depending, for instance, on the software used. The idea behind the procedure we present is to explore the set of alternate optima in order to help make a choice of optimal weights. The selection of weights for a given extreme efficient point is connected with the dimension of the efficient facets of the frontier. Our approach makes it possible to select the weights associated with the facets of higher dimension that this unit generates and, in particular, it selects those weights associated with a full dimensional efficient facet (FDEF) if any. In this sense the weights provided by our procedure will have the maximum support from the production possibility set. We also look for weights that maximize the relative value of the inputs and outputs included in the efficiency analysis in a sense to be described in this article. 相似文献
8.
Alirezaee and Afsharian [1] have proposed a new index, namely, Balance Index, to rank DMUs. In this paper, we will use their examples to illustrate that the proposed index is not stable. As a result, the corresponding rankings are also unstable. Then we analyze where an error occurs in the new method for complete ranking of decision making units and amend it by introducing the Maximal Balance Index. The numeral example reports the reasonability of our methods. 相似文献
9.
In the additive approach of two-stage network data envelopment analysis (DEA), the non-linear DEA model is transformed into a parametric linear model and then solved by computing a series of linear programs. Lim and Zhu (2013; Integrated data envelopment analysis: Global vs. local optimum.European Journal of Operational Research, 229(1), 276–278) and Ang and Chen (2016; Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega, 58, 139–153) propose two parametric linear approaches to solve additive two-stage network DEA model. The current study shows that the two approaches are equivalent and use the same parameter in searching for the global optimal solution. 相似文献
10.
Shiang-Tai Liu 《European Journal of Operational Research》2011,212(3):606-608
Data envelopment analysis (DEA) is a useful tool of efficiency measurement for firms and organizations. Kao and Hwang (2008) take into account the series relationship of the two sub-processes in a two-stage production process, and the overall efficiency of the whole process is the product of the efficiencies of the two sub-processes. To find the largest efficiency of one sub-process while maintaining the maximum overall efficiency of the whole process, Kao and Hwang (2008) propose a solution procedure to accomplish this purpose. Nevertheless, one needs to know the overall efficiency of the whole process before calculating the sub-process efficiency. In this note, we propose a method that is able to find the sub-process and overall efficiencies simultaneously. 相似文献
11.
Conventional data envelopment analysis (DEA) models are used to measure the technical and scale efficiencies of a system when it is considered as a whole unit. This paper extends the efficiency measurement to two-stage systems where each stage has one process and all the outputs from the first process become the inputs of the second. An input-oriented DEA model for the first process is developed to separate the process efficiency into the input technical and scale efficiencies, and an output-oriented model is developed for the second process to separate the process efficiency into the output technical and scale efficiencies. Combining the two models, the system efficiency is expressed as the product of the overall technical and scale efficiencies, where the overall technical and scale efficiencies are the products of the corresponding efficiencies of the two processes, respectively. The detailed decomposition allows the sources of inefficiency to be identified. 相似文献
12.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples. 相似文献
13.
Lee et al. (2011) and Chen and Liang (2011) develop a data envelopment analysis (DEA) model to address the infeasibility issue in super-efficiency models. In this paper, we point out that their model is feasible when input data are positive but can be infeasible when some of input is zero. Their model is modified so that the new super-efficiency DEA model is always feasible when data are non-negative. Note that zero data can make the super-efficiency model under constant returns to scale (CRS) infeasible. Our discussion is based upon variable returns to scale (VRS) and can be applied to CRS super-efficiency models. 相似文献
14.
Herbert F. Lewis Sreekanth Mallikarjun Thomas R. Sexton 《European Journal of Operational Research》2013
Data envelopment analysis (DEA) allows us to evaluate the relative efficiency of each of a set of decision-making units (DMUs). However, the methodology does not permit us to identify specific sources of inefficiency because DEA views the DMU as a “black box” that consumes a mix of inputs and produces a mix of outputs. Thus, DEA does not provide a DMU manager with insight regarding the internal source of the organization’s inefficiency. 相似文献
15.
A two-stage procedure is developed by Lee et al. (2011) [European Journal of Operational Research doi:10.1016/j.ejor.2011.01.022] to address the infeasibility issue in super-efficiency data envelopment analysis (DEA) models. We point out that their two-stage procedure can be solved in a single DEA-based model. 相似文献
16.
In this paper, we show how DEA may be used to identify component profiles as well as overall indices of performance in the context of an application to assessments of basketball players. We go beyond the usual uses of DEA to provide only overall indexes of performance. Our focus is, instead, on the multiplier values for the efficiently rated players. For this purpose we use a procedure that we recently developed that guarantees a full profile of non-zero weights, or “multipliers.” We demonstrate how these values can be used to identify relative strengths and weaknesses in individual players. Here we also utilize the flexibility of DEA by introducing bounds on the allowable values to reflect the views of coaches, trainers and other experts on the basketball team for which evaluations are being conducted. Finally we show how these combinations can be extended by taking account of team as well as individual considerations. 相似文献
17.
Data envelopment analysis (DEA) is a technique for evaluating relative efficiencies of peer decision making units (DMUs) which have multiple performance measures. These performance measures have to be classified as either inputs or outputs in DEA. DEA assumes that higher output levels and/or lower input levels indicate better performance. This study is motivated by the fact that there are performance measures (or factors) that cannot be classified as an input or output, because they have target levels with which all DMUs strive to achieve in order to attain the best practice, and any deviations from the target levels are not desirable and may indicate inefficiency. We show how such performance measures with target levels can be incorporated in DEA. We formulate a new production possibility set by extending the standard DEA production possibility set under variable returns-to-scale assumption based on a set of axiomatic properties postulated to suit the case of targeted factors. We develop three efficiency measures by extending the standard radial, slacks-based, and Nerlove–Luenberger measures. We illustrate the proposed model and efficiency measures by applying them to the efficiency evaluation of 36 US universities. 相似文献
18.
A DEA game model approach to supply chain efficiency 总被引:6,自引:0,他引:6
Data envelopment analysis (DEA) is a useful method to evaluate the relative efficiency of peer decision making units (DMUs).
Based upon the definitions of supply chain efficiency, we investigate the efficiency game between two supply chain members.
It is shown that there exist numerous Nash equilibriums efficiency plans for the supplier and the manufacturer with respect
to their efficiency functions. A bargaining model is then proposed to analyze the supplier and manufacturer's decision process
and to determine the best efficiency plan strategy. DEA efficiency for supply chain operations is studied for the central
control and the decentralized control cases. The current study is illustrated with a numerical example. 相似文献
19.
This paper presents a framework where data envelopment analysis (DEA) is used to measure overall efficiency and show how to apply this framework to assess effectiveness for more general behavioral goals. The relationships between various cone-ratio DEA models and models to measure overall efficiency are clarified. Specifically it is shown that as multiplier cones tighten, the cone-ratio DEA models converge to measures of overall efficiency. Furthermore, it is argued that multiplier cone and cone-ratio model selection must be consistent with the behavioral goals assigned or assumed for purposes of analysis. Consistent with this reasoning, two new models are introduced to measure effectiveness when value measures are represented by separable or linked cones, where the latter can be used to analyze profit-maximizing effectiveness. 相似文献
20.
There is a general interest in ranking schemes applied to complex entities described by multiple attributes. Published rankings
for universities are in great demand but are also highly controversial. We compare two classification and ranking schemes
involving universities; one from a published report, ‘Top American Research Universities’ by the University of Florida's TheCenter and the other using DEA. Both approaches use the same data and model. We compare the two methods and discover important equivalences.
We conclude that the critical aspect in classification and ranking is the model. This suggests that DEA is a suitable tool
for these types of studies. 相似文献