首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Time dependent vehicle routing problem with a multi ant colony system   总被引:4,自引:0,他引:4  
The Time Dependent Vehicle Routing Problem (TDVRP) consists in optimally routing a fleet of vehicles of fixed capacity when travel times are time dependent, in the sense that the time employed to traverse each given arc, depends on the time of the day the travel starts from its originating node. The optimization method consists in finding solutions that minimize two hierarchical objectives: the number of tours and the total travel time.  相似文献   

2.
Abstract

This paper considers the garbage collection problem in which vehicles with multiple compartments are used to collect the garbage. The vehicles are considered to be Alternative Fuel-powered Vehicles (AFVs). Compared with the traditional fossil fuel powered vehicles, the AFVs have limited fuel tank capacity. In addition, AFVs are allowed to refuel only at the depot. We provide a mathematical formulation and develop two solution approaches to solve the problem. The first approach is based on the saving algorithm, while the second is based on the ant colony system (ACS) metaheuristic. New problem instances have been generated to evaluate the performance of the proposed algorithms.  相似文献   

3.
The vehicle routing problem with backhaul (VRPB) is an extension of the capacitated vehicle routing problem (CVRP). In VRPB, there are linehaul as well as backhaul customers. The number of vehicles is considered to be fixed and deliveries for linehaul customers must be made before any pickups from backhaul customers. The objective is to design routes for the vehicles so that the total distance traveled is minimized. We use multi-ant colony system (MACS) to solve VRPB which is a combinatorial optimization problem. Ant colony system (ACS) is an algorithmic approach inspired by foraging behavior of real ants. Artificial ants are used to construct a solution by using pheromone information from previously generated solutions. The proposed MACS algorithm uses a new construction rule as well as two multi-route local search schemes. An extensive numerical experiment is performed on benchmark problems available in the literature.  相似文献   

4.
This paper presents a method for solving multi-depot vehicle routing problem (MDVRP). First, a virtual central depot is added to transfer MDVRP to the multi-depot vehicle routing problem with the virtual central depot (V-MDVRP), which is similar to a vehicle routing problem (VRP) with the virtual central depot as the origin. An improved ant colony optimization with coarse-grain parallel strategy, ant-weight strategy and mutation operation, is presented for the V-MDVRP. The computational results for 23 benchmark problems are reported and compared to those of other ant colony optimizations.  相似文献   

5.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

6.
The multi-objective resource allocation problem (MORAP) addresses the important issue which seeks to find the expected objectives by allocating the limited amount of resource to various activates. Resources may be manpower, assets, raw material or anything else in limited supply which can be used to accomplish the goals. The goals may be objectives (i.e., minimizing costs, or maximizing efficiency) usually driven by specific future needs. In this paper, in order to obtain a set of Pareto solution efficiently, we proposed a modified version of ant colony optimization (ACO), in this algorithm we try to increase the efficiency of algorithm by increasing the learning of ants. Effectiveness and efficiency of proposed algorithm was validated by comparing the result of ACO with hybrid genetic algorithm (hGA) which was applied to MORAP later.  相似文献   

7.
The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that deals with two types of customers: the consumers (linehaul) that request goods from the depot and the suppliers (backhaul) that send goods to the depot. In this paper, we propose a simple yet effective iterated local search algorithm for the VRPB. Its main component is an oscillating local search heuristic that has two main features. First, it explores a broad neighborhood structure at each iteration. This is efficiently done using a data structure that stores information about the set of neighboring solutions. Second, the heuristic performs constant transitions between feasible and infeasible portions of the solution space. These transitions are regulated by a dynamic adjustment of the penalty applied to infeasible solutions. An extensive statistical analysis was carried out in order to identify the most important components of the algorithm and to properly tune the values of their parameters. The results of the computational experiments carried out show that this algorithm is very competitive in comparison to the best metaheuristic algorithms for the VRPB. Additionally, new best solutions have been found for two instances in one of the benchmark sets. These results show that the performance of existing metaheuristic algorithms can be considerably improved by carrying out a thorough statistical analysis of their components. In particular, it shows that by expanding the exploration area and improving the efficiency of the local search heuristic, it is possible to develop simpler and faster metaheuristic algorithms without compromising the quality of the solutions obtained.  相似文献   

8.
On the complexity of the k-customer vehicle routing problem   总被引:1,自引:0,他引:1  
We investigate the complexity of the k-CUSTOMER VEHICLE ROUTING PROBLEM: Given an edge weighted graph, the problem requires to compute a minimum weight set of cyclic routes such that each contains a distinguished depot vertex and at most other k customer vertices, and every customer belongs to exactly one route.  相似文献   

9.
针对经典的图着色问题,在蚁群算法的基础上结合量子计算提出一种求解图着色问题的量子蚁群算法. 将量子比特和量子逻辑门引入到蚁群算法中,较好地避免了蚁群算法搜索易陷入局部极小的缺陷,并显著加快了算法的运算速度. 通过图着色实例的大量仿真实验,表明算法对图着色问题的求解是可行的、有效的,且具有通用性.  相似文献   

10.
This paper presents a new sweep-based heuristic for the fleet size and mix vehicle routing problem. This problem involves two kinds of decisions: the selection of a mix of vehicles among the available vehicle types and the routing of the selected fleet. The proposed algorithm first generates a large number of routes that are serviced by one or two vehicles. The selection of routes and vehicles to be used is then made by solving to optimality, in polynomial time, a set-partitioning problem having a special structure. Results on a set of benchmark test problems show that the proposed heuristic produces excellent solutions in short computing times. Having a fast but good solution method is needed for transportation companies that rent a significant part of their fleet and consequently can take advantage of frequent changes in fleet composition. Finally, the proposed heuristic produced new best-known solutions for three of the test problems; these solutions are reported.  相似文献   

11.
We propose an iterated local search algorithm for the vehicle routing problem with time window constraints. We treat the time window constraint for each customer as a penalty function, and assume that it is convex and piecewise linear. Given an order of customers each vehicle to visit, dynamic programming (DP) is used to determine the optimal start time to serve the customers so that the total time penalty is minimized. This DP algorithm is then incorporated in the iterated local search algorithm to efficiently evaluate solutions in various neighborhoods. The amortized time complexity of evaluating a solution in the neighborhoods is a logarithmic order of the input size (i.e., the total number of linear pieces that define the penalty functions). Computational comparisons on benchmark instances with up to 1000 customers show that the proposed method is quite effective, especially for large instances.  相似文献   

12.
This paper presents a genetic algorithm for solving capacitated vehicle routing problem, which is mainly characterised by using vehicles of the same capacity based at a central depot that will be optimally routed to supply customers with known demands. The proposed algorithm uses an optimised crossover operator designed by a complete undirected bipartite graph to find an optimal set of delivery routes satisfying the requirements and giving minimal total cost. We tested our algorithm with benchmark instances and compared it with some other heuristics in the literature. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found.  相似文献   

13.
This paper presents an approximation algorithm for a vehicle routing problem on a tree-shaped network with a single depot where there are two types of demands, pickup demand and delivery demand. Customers are located on nodes of the tree, and each customer has a positive demand of pickup and/or delivery.Demands of customers are served by a fleet of identical vehicles with unit capacity. Each vehicle can serve pickup and delivery demands. It is assumed that the demand of a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with in this paper asks to find a set of tours of the vehicles with minimum total lengths. In each tour, a vehicle begins at the depot with certain amount of goods for delivery, visits a subset of the customers in order to deliver and pick up goods and returns to the depot. At any time during the tour, a vehicle must always satisfy the capacity constraint, i.e., at any time the sum of goods to be delivered and that of goods that have been picked up is not allowed to exceed the vehicle capacity. We propose a 2-approximation algorithm for the problem.  相似文献   

14.
In this paper we investigate a vehicle routing problem motivated by a real-world application in cooperation with the German Automobile Association (ADAC). The general task is to assign service requests to service units and to plan tours for the units such as to minimize the overall cost. The characteristics of this large-scale problem due to the data volume involve strict real-time requirements. We show that the problem of finding a feasible dispatch for service units starting at their current position and serving at most k requests is NP-complete for each fixed k ≥ 2. We also present a polynomial time (2k − 1)-approximation algorithm, where again k denotes the maximal number of requests served by a single service unit. For the boundary case when k equals the total number |E| of requests (and thus there are no limitations on the tour length), we provide a -approximation. Finally, we extend our approximation results to include linear and quadratic lateness costs.  相似文献   

15.
The railroad blocking problem is one of the most important decision in freight railroads. The objective of this problem is to minimize the costs of delivering all commodities by deciding which inter-terminal blocks to build and specifying the assignment of commodities to these blocks, while observing limits on the number and aggregate volume of the blocks assembled at each terminal. This paper presents a metaheuristic algorithm based on ant colony optimization for solving this problem. To evaluate the efficiency of the proposed algorithm and the quality of solutions, experimental analysis is conducted, using several simulated test problems. The results on the test problems are compared with those of solution generated with CPLEX software. The results show high efficiency and effectiveness of the proposed algorithms. The solution method is applied to build car blocking plan in Islamic Republic of Iran Railways. By applying the presented model, Iran Railways can reduce the operational cost considerably and save the time in shipping the freights as well.  相似文献   

16.
This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms the original one, and can produce good solutions when compared with the existing heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem.  相似文献   

17.
Path relinking for the vehicle routing problem   总被引:3,自引:0,他引:3  
This paper describes a tabu search heuristic with path relinking for the vehicle routing problem. Tabu search is a local search method that explores the solution space more thoroughly than other local search based methods by overcoming local optima. Path relinking is a method to integrate intensification and diversification in the search. It explores paths that connect previously found elite solutions. Computational results show that tabu search with path relinking is superior to pure tabu search on the vehicle routing problem.  相似文献   

18.
The generalized vehicle routing problem (GVRP) is an extension of the vehicle routing problem (VRP) and was introduced by Ghiani and Improta [1]. The GVRP is the problem of designing optimal delivery or collection routes from a given depot to a number of predefined, mutually exclusive and exhaustive node-sets (clusters) which includes exactly one node from each cluster, subject to capacity restrictions. The aim of this paper is to provide two new models of the GVRP based on integer programming. The first model, called the node formulation is similar to the Kara-Bekta? formulation [2], but produces a stronger lower bound. The second one, called the flow formulation, is completely new. We show as well that under specific circumstances the proposed models of the GVRP reduces to the well known routing problems. Finally, the GVRP is extended for the case in which the vertices of any cluster of each tour are contiguous. This case is defined as the clustered generalized vehicle routing problem and both of the proposed formulations of GVRP are adapted to clustered case.  相似文献   

19.
The tour partitioning heuristic for the vehicle routing problem assumes an unlimited supply of vehicles. If the number of vehicles is fixed, this heuristic may produce infeasible solutions. We modify the heuristic to guarantee feasibility in this situation and we analyze the worst-case performance of the modified heuristic.  相似文献   

20.
We present lower bounds for the vehicle routing problem (VRP) with and without split deliveries, improving the well known bound of Haimovich and Rinnooy Kan. These bounds are then utilized in a design of best-to-date approximation algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号