首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In this paper, the filtering problem is investigated for a class of nonlinear discrete-time stochastic systems with state delays. We aim at designing a full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically, exponentially, ultimately bounded in the mean square, for all admissible nonlinearities and time delays. First, an algebraic matrix inequality approach is developed to deal with the filter analysis problem, and sufficient conditions are derived for the existence of the desired filters. Then, based on the generalized inverse theory, the filter design problem is tackled and a set of the desired filters is explicitly characterized. A simulation example is provided to demonstrate the usefulness of the proposed design method.  相似文献   

2.
In this paper, we study the stabilization of nonlinear systems in critical cases by using the center manifold reduction technique. Three degenerate cases are considered, wherein the linearized model of the system has two zero eigenvalues, one zero eigenvalue and a pair of nonzero pure imaginary eigenvalues, or two distinct pairs of nonzero pure imaginary eigenvalues; while the remaining eigenvalues are stable. Using a local nonlinear mapping (normal form reduction) and Liapunov stability criteria, one can obtain the stability conditions for the degenerate reduced models in terms of the original system dynamics. The stabilizing control laws, in linear and/or nonlinear feedback forms, are then designed for both linearly controllable and linearly uncontrollable cases. The normal form transformations obtained in this paper have been verified by using code MACSYMA.  相似文献   

3.
This paper is concerned with the problem of state feedback and output feedback control of a class of nonlinear systems with delayed measurements. This class of nonlinear systems is made up of continuous-time linear systems with nonlinear perturbations. The nonlinearity is assumed to satisfy a global Lipschitz condition and the time delay is assumed to be time-varying and have no restriction on its derivative. On the basis of the Lyapunov–Krasovskii approach, sufficient conditions for the existence of the state feedback controller and the output feedback controller are derived in terms of linear matrix inequalities. Methods of calculating the controller gain matrices are also presented. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

4.
This paper deals with the problem of absolute stability for a class of time-delay singular systems with sector-bounded nonlinearity. Both delay-independent and delay-dependent criteria are presented and formulated in the form of linear matrix inequalities (LMIs). Neither model transformation nor a bounding technique for cross-terms, nor a slack variable method is involved in obtaining the stability criteria. Numerical examples are given to show the effectiveness and improvements over some existing results.  相似文献   

5.
Utilizing the dynamic systems on time scales in a Banach space, the theory of monotone flows and fixed points for discrete as well as continuous dynamical systems are unified.  相似文献   

6.
This article is devoted to the problem of robust stabilization of uncertain nonlinear switched systems with canonical structure. It is assumed that the constant parameters of the subsystems are unknown and cannot be adopted in the controller design. In addition, the dynamics of the subsystems are perturbed via modeling errors and external disturbances. The effects of unknown actuator saturation are compensated via proper adaptive control signals. The derived controller is based on the terminal sliding mode theory and does not need any prior knowledge about the bounds of the lumped uncertain terms. It is proved that once the system states reach the prescribed sliding manifold in a finite time interval, the whole system becomes insensitive to both the lumped uncertainties and the switching dynamics of the system. The common assumption of having known quadratic Lyapunov functions for the subsystems is relaxed and the derived adaptive approach does not force any limitation on the switching signal of the system. Subsequently, non-conservative conditions are provided to guarantee the global finite time bounded stability of the equilibrium state for the overall uncertain nonlinear switched system under arbitrary switching signals. A numerical computer simulation demonstrates the robust performance of the proposed controller.  相似文献   

7.
This paper presents design, modelling and system identification of a laboratory test apparatus that has been constructed to experimentally validate the concepts of anomaly detection in complex mechanical systems. The test apparatus is designed to be complex in itself due to partially correlated interactions amongst its individual components and functional modules. The experiments are conducted on the test apparatus to represent operations of mechanical systems where both dynamic performance and structural durability are critical.  相似文献   

8.
In this paper, the problem of decentralized stability of switched nonlinear large-scale systems with time-varying delays in interconnections is studied. The time delays are assumed to be any continuous functions belonging to a given interval. By constructing a set of new Lyapunov–Krasovskii functionals, which are mainly based on the information of the lower and upper delay bounds, a new delay-dependent sufficient condition for designing switching law of exponential stability is established in terms of linear matrix inequalities (LMIs). The developed method using new inequalities for lower bounding cross terms eliminate the need for overbounding and provide larger values of the admissible delay bound. Numerical examples are given to illustrate the effectiveness of the new theory.  相似文献   

9.
In this paper, we consider the question of necessary conditions for optimality for systems governed by second-order parabolic partial delay-differential equations with first boundary conditions. All the coefficients of the system are assumed bounded measurable and contain controls and delays in their arguments. The second-order parabolic partial delay-differential equation is in divergence form. In Theorem 4.1, we present results on the existence and uniqueness of weak solutions in the sense of Ladyzhenskaya-Solonnikov-Ural'ceva for this class of systems. An integral maximum principle and its point-wise version for the corresponding controlled system are established in Theorem 5.1 and Corollary 5.1, respectively.The authors wish to thank Dr. E. Noussair for his stimulating discussion and valuable comments in the preparation of this paper. Further, they also wish to acknowledge the referee of the paper for his valuable suggestions and comments. The discussion presented in Section 6 is in response to his suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号