首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
A Tabu Search Algorithm for the Quadratic Assignment Problem   总被引:1,自引:0,他引:1  
Tabu search approach based algorithms are among the widest applied to various combinatorial optimization problems. In this paper, we propose a new version of the tabu search algorithm for the well-known problem, the quadratic assignment problem (QAP). One of the most important features of our tabu search implementation is an efficient use of mutations applied to the best solutions found so far. We tested this approach on a number of instances from the library of the QAP instances—QAPLIB. The results obtained from the experiments show that the proposed algorithm belongs to the most efficient heuristics for the QAP. The high efficiency of this algorithm is also demonstrated by the fact that the new best known solutions were found for several QAP instances.  相似文献   

2.
A robust search algorithm should ideally exhibit reasonable performance on a diverse and varied set of problems. In an earlier paper Lim et al. (Computational Optimization and Applications, vol. 15, no. 3, 2000), we outlined a class of hybrid genetic algorithms based on the k-gene exchange local search for solving the quadratic assignment problem (QAP). We follow up on our development of the algorithms by reporting in this paper the results of comprehensive testing of the hybrid genetic algorithms (GA) in solving QAP. Over a hundred instances of QAP benchmarks were tested using a standard set of parameters setting and the results are presented along with the results obtained using simple GA for comparisons. Results of our testing on all the benchmarks show that the hybrid GA can obtain good quality solutions of within 2.5% above the best-known solution for 98% of the instances of QAP benchmarks tested. The computation time is also reasonable. For all the instances tested, all except for one require computation time not exceeding one hour. The results will serve as a useful baseline for performance comparison against other algorithms using the QAP benchmarks as a basis for testing.  相似文献   

3.
二次分配问题(Quadratic assignment problem,QAP)属于NP-hard组合优化难题。二次分配问题的线性化模型和下界计算方法,是求解二次分配问题的重要途径。本文以二次分配问题的线性化模型为基础,根据现有QAP对偶上升下界计算方法中的具体操作,提出几种可行的QAP对偶上升计算新方法。最后,通过求解QA-PLIB中的部分实例,深入分析其运行结果,详细讨论了基于匈牙利算法求解二次分配问题的对偶方法中哪些操作可较大程度地提高目标函数最优解的下界增长速度,这为基于匈牙利算法求解二次分配问题的方法的改进奠定了基础。  相似文献   

4.
Most of the research on integrated inventory and routing problems ignores the case when products are perishable. However, considering the integrated problem with perishable goods is crucial since any discrepancy between the routing and inventory cost can double down the risk of higher obsolescence costs due to the limited shelf-life of the products. In this paper, we consider a distribution problem involving a depot, a set of customers and a homogeneous fleet of capacitated vehicles. Perishable goods are transported from the depot to customers in such a way that out-of-stock situations never occur. The objective is to simultaneously determine the inventory and routing decisions over a given time horizon such that total transportation cost is minimized. We present a new “arc-based formulation” for the problem which is deemed more suitable for our new tabu search based approach for solving the problem. We perform a thorough sensitivity analysis for each of the tabu search parameters individually and use the obtained gaps to fine-tune the parameter values that are used in solving larger sized instances of the problem. We solve different sizes of randomly generated instances and compare the results obtained using the tabu search algorithm to those obtained by solving the problem using CPLEX and a recently published column generation algorithm. Our computational experiments demonstrate that the tabu search algorithm is capable of obtaining a near-optimal solution in less computational time than the time required to solve the problem to optimality using CPLEX, and outperforms the column generation algorithm for solving the “path flow formulation” of the problem in terms of solution quality in almost all of the considered instances.  相似文献   

5.
In this study, we present a heterogeneous cooperative parallel search that integrates branch-and-bound method and tabu search algorithm. These two algorithms perform searches in parallel and cooperate by asynchronously exchanging information about the best solutions found and new initial solutions for tabu search. The rapid production of a good solution from the tabu search process provides the branch-and-bound process with a better feasible solution to accelerate the elimination of subproblems that do not contain an optimal solution. The new initial solution produced from the subproblem with a least-cost lower bound of the branch-and-bound method suggests the best potential area for tabu search to explore. We use a master-slave model to reduce the complexity of communication and enhance the performance of data exchange. A branch-and-bound process is used as the master process to control the exchange of information and the termination of computation. Several tabu search processes are executed simultaneously as the slave processes and cooperate by asynchronously exchanging information on the best solutions found and the new initial solutions by the master process of branch-and-bound. Based on the computation experiments of solving traveling salesman problems (TSP), the proposed heterogeneous parallel search algorithm outperforms a conventional parallel branch-and-bound method and a conventional parallel tabu search. We also present the computational results showing the efficiency of heterogeneous cooperative parallel search when we use more processors to accelerate search time. Thus, the proposed heterogeneous parallel search algorithm achieves linear accelerations.  相似文献   

6.
Semidefinite programming (SDP) bounds for the quadratic assignment problem (QAP) were introduced in Zhao et?al. (J Comb Optim 2:71–109, 1998). Empirically, these bounds are often quite good in practice, but computationally demanding, even for relatively small instances. For QAP instances where the data matrices have large automorphism groups, these bounds can be computed more efficiently, as was shown in Klerk and Sotirov (Math Program A, 122(2), 225–246, 2010). Continuing in the same vein, we show how one may obtain stronger bounds for QAP instances where one of the data matrices has a transitive automorphism group. To illustrate our approach, we compute improved lower bounds for several instances from the QAP library QAPLIB.  相似文献   

7.
Many network design problems arising in areas as diverse as VLSI circuit design, QoS routing, traffic engineering, and computational sustainability require clients to be connected to a facility under path-length constraints and budget limits. These problems can be seen as instances of the rooted distance-constrained minimum spanning-tree problem (RDCMST), which is NP-hard. An inherent feature of these networks is that they are vulnerable to a failure. Therefore, it is often important to ensure that all clients are connected to two or more facilities via edge-disjoint paths. We call this problem the edge-disjoint RDCMST (ERDCMST). Previous work on the RDCMST has focused on dedicated algorithms and therefore it is difficult to use these algorithms to tackle the ERDCMST. We present a constraint-based parallel local search algorithm for solving the ERDCMST. Traditional ways of extending a sequential algorithm to run in parallel perform either portfolio-based search in parallel or parallel neighbourhood search. Instead, we exploit the semantics of the constraints of the problem to perform multiple moves in parallel by ensuring that they are mutually independent. The ideas presented in this paper are general and can be adapted to other problems as well. The effectiveness of our approach is demonstrated by experimenting with a set of problem instances taken from real-world passive optical network deployments in Ireland, Italy, and the UK. Our results show that performing moves in parallel can significantly reduce the elapsed time and improve the quality of the solutions of our local search approach.  相似文献   

8.
二次分配问题(Quadratic assignment problem,QAP)属于NP-hard组合优化难题.二次分配问题的线性化及下界计算方法,是求解二次分配问题的重要途径.以Frieze-Yadegar线性化模型和Gilmore-Lawler下界为基础,详细论述了二次分配问题线性化模型的结构特征,并分析了Gilmore-Lawler下界值往往远离目标函数最优值的原因.在此基础上,提出一种基于匈牙利算法的二次分配问题对偶上升下界求解法.通过求解QAPLIB中的部分实例,说明了方法的有效和可行性.  相似文献   

9.
In this article we provide an exact expression for computing the autocorrelation coefficient ξ and the autocorrelation length ? of any arbitrary instance of the Quadratic Assignment Problem (QAP) in polynomial time using its elementary landscape decomposition. We also provide empirical evidence of the autocorrelation length conjecture in QAP and compute the parameters ξ and ? for the 137 instances of the QAPLIB. Our goal is to better characterize the difficulty of this important class of problems to ease the future definition of new optimization methods. Also, the advance that this represents helps to consolidate QAP as an interesting and now better understood problem.  相似文献   

10.
The quadratic assignment problem (QAP) is a challenging combinatorial problem. The problem is NP-hard and in addition, it is considered practically intractable to solve large QAP instances, to proven optimality, within reasonable time limits. In this paper we present an attractive mixed integer linear programming (MILP) formulation of the QAP. We first introduce a useful non-linear formulation of the problem and then a method of how to reformulate it to a new exact, compact discrete linear model. This reformulation is efficient for QAP instances with few unique elements in the flow or distance matrices. Finally, we present optimal results, obtained with the discrete linear reformulation, for some previously unsolved instances (with the size n = 32 and 64), from the quadratic assignment problem library, QAPLIB.  相似文献   

11.
In this work a genetic algorithm is presented for the unrelated parallel machine scheduling problem in which machine and job sequence dependent setup times are considered. The proposed genetic algorithm includes a fast local search and a local search enhanced crossover operator. Two versions of the algorithm are obtained after extensive calibrations using the Design of Experiments (DOE) approach. We review, evaluate and compare the proposed algorithm against the best methods known from the literature. We also develop a benchmark of small and large instances to carry out the computational experiments. After an exhaustive computational and statistical analysis we can conclude that the proposed method shows an excellent performance overcoming the rest of the evaluated methods in a comprehensive benchmark set of instances.  相似文献   

12.
COSEARCH: A Parallel Cooperative Metaheuristic   总被引:1,自引:0,他引:1  
In order to design a well-balanced metaheuristic for robustness, we propose the COSEARCH approach which manages the cooperation of complementary heuristic methods via an adaptive memory which contains a history of the search already done. In this paper, we present the idiosyncrasies of the COSEARCH approach and its application for solving large scale instances of the quadratic assignment problem (QAP). We propose an original design of the adaptive memory in order to focus on high quality regions of the search and avoid attractive but deceptive areas. For the QAP, we have hybridized three heuristic agents of complementary behaviours: a Tabu Search is used as the main search algorithm, a Genetic Algorithm is in charge of the diversification and a Kick Operator is applied to intensify the search. The evaluations have been executed on large scale network of workstations via a parallel environment which supports fault tolerance and adaptive dynamic scheduling of tasks.  相似文献   

13.
Solving large quadratic assignment problems on computational grids   总被引:10,自引:0,他引:10  
The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported. Received: September 29, 2000 / Accepted: June 5, 2001?Published online October 2, 2001  相似文献   

14.
The set covering problem (SCP) calls for a minimum cost family of subsets from n given subsets, which together covers the entire ground set. In this paper, we propose a local search algorithm for SCP, which has the following three characteristics. (1) The use of 3-flip neighborhood, which is the set of solutions obtainable from the current solution by exchanging at most three subsets. As the size of 3-flip neighborhood is O(n3), the neighborhood search becomes expensive if implemented naively. To overcome this, we propose an efficient implementation that reduces the number of candidates in the neighborhood without sacrificing the solution quality. (2) We allow the search to visit the infeasible region, and incorporate the strategic oscillation technique realized by adaptive control of penalty weights. (3) The size reduction of the problem by using the information from the Lagrangian relaxation is incorporated, which is indispensable for solving very large instances. According to computational comparisons on benchmark instances with other existing heuristic algorithms for SCP, our algorithm performs quite effectively for various types of problems, especially for very large-scale instances.  相似文献   

15.
In this paper, a memetic algorithm is developed to solve the orienteering problem with hotel selection (OPHS). The algorithm consists of two levels: a genetic component mainly focuses on finding a good sequence of intermediate hotels, whereas six local search moves embedded in a variable neighborhood structure deal with the selection and sequencing of vertices between the hotels. A set of 176 new and larger benchmark instances of OPHS are created based on optimal solutions of regular orienteering problems. Our algorithm is applied on these new instances as well as on 224 benchmark instances from the literature. The results are compared with the known optimal solutions and with the only other existing algorithm for this problem. The results clearly show that our memetic algorithm outperforms the existing algorithm in terms of solution quality and computational time. A sensitivity analysis shows the significant impact of the number of possible sequences of hotels on the difficulty of an OPHS instance.  相似文献   

16.
The quadratic assignment problem (QAP) is known to be NP-hard. We propose a hybrid metaheuristic called ANGEL to solve QAP. ANGEL combines the ant colony optimization (ACO), the genetic algorithm (GA) and a local search method (LS). There are two major phases in ANGEL, namely ACO phase and GA phase. Instead of starting from a population that consists of randomly generated chromosomes, GA has an initial population constructed by ACO in order to provide a good start. Pheromone acts as a feedback mechanism from GA phase to ACO phase. When GA phase reaches the termination criterion, control is transferred back to ACO phase. Then ACO utilizes pheromone updated by GA phase to explore solution space and produces a promising population for the next run of GA phase. The local search method is applied to improve the solutions obtained by ACO and GA. We also propose a new concept called the eugenic strategy intended to guide the genetic algorithm to evolve toward a better direction. We report the results of a comprehensive testing of ANGEL in solving QAP. Over a hundred instances of QAP benchmarks were tested and the results show that ANGEL is able to obtain the optimal solution with a high success rate of 90%. This work was supported in part by the National Science Council, R.O.C., under Contract NSC 91-2213-E-005-017.  相似文献   

17.
This paper is concerned with a new approach for solving quadratic assignment problems (QAP). We first reformulate QAP as a concave quadratic programming problem and apply an outer approximation algorithm. In addition, an improvement routine is incorporated in the final stage of the algorithm. Computational experiments on a set of standard data demonstrate that this algorithm can yield favorable results with a relatively low computational effort.  相似文献   

18.
This paper presents a parallel tabu search algorithm that utilizes several different neighborhood structures for solving the capacitated vehicle routing problem. Single neighborhood or neighborhood combinations are encapsulated in tabu search threads and they cooperate through a solution pool for the purpose of exploiting their joint power. The computational experiments on 32 large scale benchmark instances show that the proposed method is highly effective and competitive, providing new best solutions to four instances while the average deviation of all best solutions found from the collective best results reported in the literature is about 0.22%. We are also able to associate the beneficial use of special neighborhoods with some test instance characteristics and uncover some sources of the collective power of multi-neighborhood cooperation.  相似文献   

19.
Biological computing provides a promising approach to attacking computationally intractable problems. The quadratic assignment problem (QAP) is a well-known NP-hard combinatorial optimization problem. This paper addresses the problem of how to solve QAP under the Adleman–Lipton-sticker model. A theoretically efficient DNA algorithm for solving QAP is proposed, which is executed by performing O(Kn4) operations on test tubes of DNA molecular strands with n2 + K + 1 bit regions, where n is the number of facilities, and K is the length of the binary representation of an upper bound on the objective function. With the rapid progress of molecular biology techniques, the proposed algorithm might be of practical use in treating medium-sized instances of QAP.  相似文献   

20.
刘乐 《运筹与管理》2017,26(11):49-58
针对以总完工时间与总外包费用加权和为优化目标、总外包费用不超过给定上限的单机单转包商调度与外包联合优化问题,设计出一种改进的剔除型启发式算法。该算法通过运用动态规划技术求解新的辅助问题来获取初始外包工件集,并引入判定条件提前从初始外包工件集中剔除特定工件。为满足对总外包费用的上限约束,还利用新型的启发式筛选次序族逐一确定从当前外包工件集中剔除的工件。在仿真实验中,通过生成大量的测试算例,对比分析了改进算法与另2种已报道算法在求解质量、计算时间上的表现情况。实验结果表明所提出的改进算法在解的整体质量上具备显著的比较优势,并且能在5.6秒内完成对工件总数为1500的测试算例的求解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号