首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to construct the tanh-travelling wave solution of the nonlinear partial differential equations (NPDEs) is present, which combines the two kind methods—the tanh function series method and reduction of the NPDEs to a quadrature problem (RQ method). The nonlinear Schrödinger-type (NLS-type) equations (stable, unstable, inhomogeneous and derivative NLS equations, i.e., SNLS, UNLS, IHNLS and DNLS equations) are chosen to illustrate the method and tanh-travelling wave solutions are obtained.  相似文献   

2.
In this paper, a parametric variant of Steffensen-secant method and three fast variants of Steffensen-secant method for solving nonlinear equations are suggested. They achieve cubic convergence or super cubic convergence for finding simple roots by only using three evaluations of the function per step. Their error equations and asymptotic convergence constants are deduced. Modified Steffensen’s method and modified parametric variant of Steffensen-secant method for finding multiple roots are also discussed. In the numerical examples, the suggested methods are supported by the solution of nonlinear equations and systems of nonlinear equations, and the application in the multiple shooting method.  相似文献   

3.
We develop an alternative approach for the form-finding of the minimal surface membranes (including cable membranes) using discrete models and nonlinear force density method. Two directed weighted graphs with 3 and 4-sided regional cycles, corresponding to triangular and quadrilateral finite element meshes are introduced as computational models for the form-finding problem. The triangular graph model is closely related to the triangular computational models available in the literature whilst the quadrilateral graph uses a novel averaging approach for the form-finding of membrane structures within the context of nonlinear force density method. The viability of the mentioned discrete models for form-finding are studied through two solution methods including a fixed-point iteration method and the Newton–Raphson method with backtracking. We suggest a hybrid version of these methods as an effective solution strategy. Examples of the formation of certain well-known minimal surfaces are presented whilst the results obtained are compared and contrasted with analytical solutions in order to verify the accuracy and viability of the suggested methods.  相似文献   

4.
This paper targets to investigate the solution of linear and nonlinear ordinary differential equations with fuzzy initial condition. Here, two improved Euler type methods have been proposed in order to obtain numerical solution of the problem. Along with this, an exact methodology is also discussed. The obtained results are depicted in term of plots to show the efficiency of the proposed methods. The solutions are compared with the known results and are found that those obtained by the proposed methods are tighter than the results from the existing method.  相似文献   

5.
Using Balakrishnan's epsilon problem formulation (Ref. 1) and the Rayleigh-Ritz method with an orthogonal polynomial function basis, optimal control problems are transformed from the standard two-point boundary-value problem to a nonlinear programming problem. The resulting matrix-vector equations describing the optimal solution have standard parallel solution methods for implementation on parallel processor arrays. The method is modified to handle inequality constraints, and some results are presented under which specialized nonlinear functions, such as sines and cosines, can be handled directly. Some computational results performed on an Intel Sugarcube are presented to illustrate that considerable computational savings can be realized by using the proposed solution method.  相似文献   

6.
A new smoothing quasi-Newton method for nonlinear complementarity problems is presented. The method is a generalization of Thomas’ method for smooth nonlinear systems and has similar properties as Broyden's method. Local convergence is analyzed for a strictly complementary solution as well as for a degenerate solution. Presented numerical results demonstrate quite similar behavior of Thomas’ and Broyden's methods.  相似文献   

7.
We report a modification of the Stiefel-Bettis method which is of trigonometric order one and of polynomial order two for the general second order initial value problems. We also discuss the modified Stiefel-Bettis method made explicit for the undamped nonlinear oscillators. Numerical solution of problems are given to illustrate the methods.  相似文献   

8.
The direct shooting method for the solution of boundary-value problems for ordinary, nonlinear differential equations is analyzed from the point of view of linearization. Some relations between this method and perturbation methods are established. The relations between the direct shooting algorithm and Whittaker's algorithm are also established, considering the problem from the point of view of solving nonlinear algebraic equations.  相似文献   

9.
In this paper, based on homotopy perturbation method (HPM) and reproducing kernel method (RKM), a new method is presented for solving nonlinear systems of second order boundary value problems (BVPs). HPM is based on the use of traditional perturbation method and homotopy technique. The HPM can reduce a nonlinear problem to a sequence of linear problems and generate a rapid convergent series solution in most cases. RKM is also an analytical technique, which can solve powerfully linear BVPs. Homotopy perturbation-reproducing kernel method (HP-RKM) combines advantages of these two methods and therefore can be used to solve efficiently systems of nonlinear BVPs. Three numerical examples are presented to illustrate the strength of the method.  相似文献   

10.
In this article, a Differential Transform Method (DTM) based on the mean fourth calculus is developed to solve random differential equations. An analytical mean fourth convergent series solution is found for a nonlinear random Riccati differential equation by using the random DTM. Besides obtaining the series solution of the Riccati equation, we provide approximations of the main statistical functions of the stochastic solution process such as the mean and variance. These approximations are compared to those obtained by the Euler and Monte Carlo methods. It is shown that this method applied to the random Riccati differential equation is more efficient than the two above mentioned methods.  相似文献   

11.
This paper proposes an efficient continuation method for solving nonlinear equations. The proposed method belongs to a class of predictor-corrector methods and uses modified Euler's predictors in order that larger step-sizes may be accepted. Some numerical results show that the method obtains a solution with less computational effort than the ordinary Euler's method, especially when the starting point is far from the solution.  相似文献   

12.
The convection dominated diffusion problems are studied. Higher order accurate numerical methods are presented for problems in one and two dimensions. The underlying technique utilizes a superposition of given problem into two independent problems. The first one is the reduced problem that refers to the outer or smooth solution. Stretching transformation is used to obtain the second problem for inner layer solution. The method considered for outer or degenerate problems are based on higher order Runge–Kutta methods and upwind finite differences. However, inner problem is solved analytically or asymptotically. The schemes presented are proved to be consistent and stable. Possible extensions to delay differential equations and to nonlinear problems are outlined. Numerical results for several test examples are illustrated and a comparative analysis is presented. It is observed that the method presented is highly accurate and easy to implement. Moreover, the numerical results obtained are not only comparable with the exact solution but also in agreement with the theoretical estimates.  相似文献   

13.
In this article, we present the uniform convergence analysis and accuracy estimation of hybrid functions (HFs) method for finding the solution of nonlinear Volterra and Fredholm integral equations. The properties of HFs which consist of block-pulse functions (BPFs) and Legendre polynomials are used to reduce the solution of nonlinear integral equations to the solution of algebraic equations. The superiority and accuracy of the HFs method to BPF and Legendre polynomial methods are illustrated through some numerical examples.  相似文献   

14.
The variational iteration method is applied to solve the cubic nonlinear Schrödinger (CNLS) equation in one and two space variables. In both cases, we will reduce the CNLS equation to a coupled system of nonlinear equations. Numerical experiments are made to verify the efficiency of the method. Comparison with the theoretical solution shows that the variational iteration method is of high accuracy.  相似文献   

15.
Jacobian smoothing Brown’s method for nonlinear complementarity problems (NCP) is studied in this paper. This method is a generalization of classical Brown’s method. It belongs to the class of Jacobian smoothing methods for solving semismooth equations. Local convergence of the proposed method is proved in the case of a strictly complementary solution of NCP. Furthermore, a locally convergent hybrid method for general NCP is introduced. Some numerical experiments are also presented.  相似文献   

16.
The capability of Extended tanh–coth, sine–cosine and Exp-Function methods as alternative approaches to obtain the analytic solution of different types of applied differential equations in engineering mathematics has been revealed. In this study, the generalized nonlinear Schrödinger (GNLS) equation is solved by three different methods. To obtain the single-soliton solutions for the equation, the Extended tanh–coth and sine–cosine methods are used. Furthermore, for this nonlinear evolution equation the Exp-Function method is applied to derive various travelling wave solution. Results show that while the first two procedures easily provide a concise solution, the Exp-Function method provides a powerful mathematical means for solving nonlinear evolution equations in mathematical physics.  相似文献   

17.
Summary. We present an approximate-inertial-manifold-based postprocess to enhance Chebyshev or Legendre spectral Galerkin methods. We prove that the postprocess improves the order of convergence of the Galerkin solution, yielding the same accuracy as the nonlinear Galerkin method. Numerical experiments show that the new method is computationally more efficient than Galerkin and nonlinear Galerkin methods. New approximation results for Chebyshev polynomials are presented. Received January 5, 1998 / Revised version received September 7, 1999 / Published online June 8, 2000  相似文献   

18.
This paper is concerned with monotone algorithms for the finite difference solutions of a class of nonlinear reaction-diffusion-convection equations with nonlinear boundary conditions. A modified accelerated monotone iterative method is presented to solve the finite difference systems for both the time-dependent problem and its corresponding steady-state problem. This method leads to a simple and yet efficient linear iterative algorithm. It yields two sequences of iterations that converge monotonically from above and below, respectively, to a unique solution of the system. The monotone property of the iterations gives concurrently improving upper and lower bounds for the solution. It is shown that the rate of convergence for the sum of the two sequences is quadratic. Under an additional requirement, quadratic convergence is attained for one of these two sequences. In contrast with the existing accelerated monotone iterative methods, our new method avoids computing local maxima in the construction of these sequences. An application using a model problem gives numerical results that illustrate the effectiveness of the proposed method.  相似文献   

19.
We provide sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear operator equation containing operators that are Fréchet-differentiable of order at least two, in a Banach space setting. Numerical examples are also provided to show that our results apply to solve nonlinear equations in cases earlier ones cannot [J.M. Gutiérrez, A new semilocal convergence theorem for Newton’s method, J. Comput. Appl. Math. 79(1997) 131-145; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211-217; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Mathematica 5 (1985) 71-84].  相似文献   

20.
On a new analytical method for flow between two inclined walls   总被引:1,自引:0,他引:1  
Efficient analytical methods for solving highly nonlinear boundary value problems are rare in nonlinear mechanics. The purpose of this study is to introduce a new algorithm that leads to exact analytical solutions of nonlinear boundary value problems and performs more efficiently compared to other semi-analytical techniques currently in use. The classical two-dimensional flow problem into or out of a wedge-shaped channel is used as a numerical example for testing the new method. Numerical comparisons with other analytical methods of solution such as the Adomian decomposition method (ADM) and the improved homotopy analysis method (IHAM) are carried out to verify and validate the accuracy of the method. We show further that with a slight modification, the algorithm can, under certain conditions, give better performance with enhanced accuracy and faster convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号