首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A numerical study is presented of reaction–diffusion problems having singular reaction source terms, singular in the sense that within the spatial domain the source is defined by a Dirac delta function expression on a lower dimensional surface. A consequence is that solutions will be continuous, but not continuously differentiable. This lack of smoothness and the lower dimensional surface form an obstacle for numerical discretization, including amongst others order reduction. In this paper the standard finite volume approach is studied for which reduction from order two to order one occurs. A local grid refinement technique is discussed which overcomes the reduction.  相似文献   

2.
In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, it reveals that multi-symplectic Runge-Kutta methods applied to equations with appropriate boundary conditions can preserve the global norm conservation and the global charge conservation, respectively.  相似文献   

3.
A class of weighted finite difference methods (WFDMs) for solving a class of initial-boundary value problems of space fractional partial differential equations with variable coefficients is presented. Their stability and convergence properties are considered. It is proven that the WFDMs are unconditionally-stable for , and conditionally-stable for , here r is the weighting parameter subjected to 0≤r≤1. Some convergence results are given. These methods, problems and results generalize the corresponding methods, problems and results given in [7], [8] and [10]. Some numerical examples are provided to show the effectiveness of the methods with different weighting parameters.  相似文献   

4.
He  Qiming  Kang  Lishan  Evans  D.J. 《Numerical Algorithms》1997,16(2):129-153
In this article, a class of nonlinear evolution equations – reaction–diffusion equations with time delay – is studied. By combining the domain decomposition technique and the finite difference method, the results for the existence, convergence and the stability of the numerical solution are obtained in the case of subdomain overlap and when the time-space is completely discretized. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
A class of explicit multistep exponential methods for abstract semilinear equations is introduced and analyzed. It is shown that the k-step method achieves order k, for appropriate starting values, which can be computed by auxiliary routines or by one strategy proposed in the paper. Together with some implementation issues, numerical illustrations are also provided.  相似文献   

6.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

7.
In this article, a linearized conservative difference scheme for a coupled nonlinear Schrödinger equations is studied. The discrete energy method and an useful technique are used to analyze the difference scheme. It is shown that the difference solution unconditionally converges to the exact solution with second order in the maximum norm. Numerical experiments are presented to support the theoretical results.  相似文献   

8.
In this paper we estimate the error of upwind first order finite volume schemes applied to scalar conservation laws. As a first step, we consider standard upwind and flux finite volume scheme discretization of a linear equation with space variable coefficients in conservation form. We prove that, in spite of their lack of consistency, both schemes lead to a first order error estimate. As a final step, we prove a similar estimate for the nonlinear case. Our proofs rely on the notion of geometric corrector, introduced in our previous paper by Bouche et al. (2005) [24] in the context of constant coefficient linear advection equations.  相似文献   

9.
Semi-Lagrangian semi-implicit (SLSI) method is currently one of the most efficient approaches for numerical solution of the atmosphere dynamics equations. In this research we apply splitting techniques in the context of a two-time-level SLSI scheme in order to simplify the treatment of the slow physical modes and optimize the solution of the elliptic equations related to implicit part of the scheme. The performed numerical experiments show the accuracy and computational efficiency of the scheme.  相似文献   

10.
During the past few years, the idea of using meshless methods for numerical solution of partial differential equations (PDEs) has received much attention throughout the scientific community, and remarkable progress has been achieved on meshless methods. The meshless local Petrov-Galerkin (MLPG) method is one of the “truly meshless” methods since it does not require any background integration cells. The integrations are carried out locally over small sub-domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. In this paper the MLPG method for numerically solving the non-linear two-dimensional sine-Gordon (SG) equation is developed. A time-stepping method is employed to deal with the time derivative and a simple predictor-corrector scheme is performed to eliminate the non-linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of proposed method to deal with the unsteady non-linear problems in large domains.  相似文献   

11.
In population balance equations, the distribution of the entities depends not only on space and time but also on their own properties referred to as internal coordinates. The operator splitting method is used to transform the whole time-dependent problem into two unsteady subproblems of a smaller complexity. The first subproblem is a time-dependent convection-diffusion problem while the second one is a transient transport problem with pure advection. We use the backward Euler method to discretize the subproblems in time. Since the first problem is convection-dominated, the local projection method is applied as stabilization in space. The transport problem in the one-dimensional internal coordinate is solved by a discontinuous Galerkin method. The unconditional stability of the method will be presented. Optimal error estimates are given. Numerical tests confirm the theoretical results.  相似文献   

12.
13.
In general, proofs of convergence and stability are difficult for symplectic schemes of nonlinear equations. In this paper, a symplectic difference scheme is proposed for an initial-boundary value problem of a coupled nonlinear Schrödinger system. An important lemma and an induction argument are used to prove the unique solvability, convergence and stability of numerical solutions. An iterative algorithm is also proposed for the symplectic scheme and its convergence is proved. Numerical examples show the efficiency of the symplectic scheme and the correction of our numerical analysis.  相似文献   

14.
We consider the discretization in time of an inhomogeneous parabolic integro-differential equation, with a memory term of convolution type, in a Banach space setting. The method is based on representing the solution as an integral along a smooth curve in the complex plane which is evaluated to high accuracy by quadrature, using the approach in recent work of López-Fernández and Palencia. This reduces the problem to a finite set of elliptic equations with complex coefficients, which may be solved in parallel. The method is combined with finite element discretization in the spatial variables to yield a fully discrete method. The paper is a further development of earlier work by the authors, which on the one hand treated purely parabolic equations and, on the other, an evolution equation with a positive type memory term. The authors acknowledge the support of the Australian Research Council.  相似文献   

15.
Runge–Kutta based convolution quadrature methods for abstract, well-posed, linear, and homogeneous Volterra equations, non necessarily of sectorial type, are developed. A general representation of the numerical solution in terms of the continuous one is given. The error and stability analysis is based on this representation, which, for the particular case of the backward Euler method, also shows that the numerical solution inherits some interesting qualitative properties, such as positivity, of the exact solution. Numerical illustrations are provided.  相似文献   

16.
By introducing a time relaxation term for the time derivative of higher frequency components, we proposed a stabilized semi-implicit Galerkin scheme for evolutionary Navier-Stokes equations in this paper. Analysis shows that such a scheme has weaker stability conditions than that of a classical semi-implicit Galerkin scheme and, when a suitable relaxation parameter σ is chosen, it generates an approximate solution with the same accuracy as the classical one. That means the proposed scheme might use a larger time step to generate a bounded approximate solution. Thus it is more suitable for long time simulations.  相似文献   

17.
Two-grid methods are studied for solving a two dimensional nonlinear parabolic equation using finite volume element method. The methods are based on one coarse-grid space and one fine-grid space. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine-grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. The two-grid methods achieve asymptotically optimal approximation as long as the mesh sizes satisfy h=O(H3|lnH|)h=O(H3|lnH|). As a result, solving such a large class of nonlinear parabolic equations will not be much more difficult than solving one single linearized equation.  相似文献   

18.
The least-squares spectral element method has been applied to the one-dimensional inviscid Burgers equation which allows for discontinuous solutions. In order to achieve high order accuracy both in space and in time a space–time formulation has been applied. The Burgers equation has been discretized in three different ways: a non-conservative formulation, a conservative system with two variables and two equations: one first order linear PDE and one linearized algebraic equation, and finally a variant on this conservative formulation applied to a direct minimization with a QR-decomposition at elemental level. For all three formulations an h/p-convergence study has been performed and the results are discussed in this paper.  相似文献   

19.
A nonlinear finite difference scheme with high accuracy is studied for a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. Rigorous theoretical analysis is made for the stability and convergence properties of the scheme, which shows it is unconditionally stable and convergent with second order rate for both spatial and temporal variables. In the argument of theoretical results, difficulties arising from the nonlinearity and coupling between parabolic and hyperbolic equations are overcome, by an ingenious use of the method of energy estimation and inductive hypothesis reasoning. The reasoning method here differs from those used for linear implicit schemes, and can be widely applied to the studies of stability and convergence for a variety of nonlinear schemes for nonlinear PDE problems. Numerical tests verify the results of the theoretical analysis. Particularly it is shown that the scheme is more accurate and faster than a previous two-level nonlinear scheme with first order temporal accuracy.  相似文献   

20.
In this paper we obtain convergence results for the fully discrete projection method for the numerical approximation of the incompressible Navier–Stokes equations using a finite element approximation for the space discretization. We consider two situations. In the first one, the analysis relies on the satisfaction of the inf-sup condition for the velocity-pressure finite element spaces. After that, we study a fully discrete fractional step method using a Poisson equation for the pressure. In this case the velocity-pressure interpolations do not need to accomplish the inf-sup condition and in fact we consider the case in which equal velocity-pressure interpolation is used. Optimal convergence results in time and space have been obtained in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号