首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly lines are special flow-line production systems which are of great importance in the industrial production of high quantity standardized commodities. Recently, assembly lines even gained importance in low volume production of customized products (mass-customization). Due to high capital requirements when installing or redesigning a line, its configuration planning is of great relevance for practitioners. Accordingly, this attracted attention of many researchers, who tried to support real-world configuration planning by suited optimization models (assembly line balancing problems). In spite of the enormous academic effort in assembly line balancing, there remains a considerable gap between requirements of real configuration problems and the status of research. To ease communication between researchers and practitioners, we provide a classification scheme of assembly line balancing. This is a valuable step in identifying remaining research challenges which might contribute to closing the gap.  相似文献   

2.
Goal programming is an important technique for solving many decision/management problems. Fuzzy goal programming involves applying the fuzzy set theory to goal programming, thus allowing the model to take into account the vague aspirations of a decision-maker. Using preference-based membership functions, we can define the fuzzy problem through natural language terms or vague phenomena. In fact, decision-making involves the achievement of fuzzy goals, some of them are met and some not because these goals are subject to the function of environment/resource constraints. Thus, binary fuzzy goal programming is employed where the problem cannot be solved by conventional goal programming approaches. This paper proposes a new idea of how to program the binary fuzzy goal programming model. The binary fuzzy goal programming model can then be solved using the integer programming method. Finally, an illustrative example is included to demonstrate the correctness and usefulness of the proposed model.  相似文献   

3.
The simple assembly line balancing problem is the simplification of a real problem associated to the assignment of the elementary tasks required for assembly of a product in an assembly line. This problem has been extensively studied in the literature for more than half a century. The present work proposes a new procedure to solve the problem we call Bounded Dynamic Programming. This use of the term Bounded is associated not only with the use of bounds to reduce the state space but also to the reduction of such space based on heuristics. This procedure is capable of obtaining an optimal solution rate of 267 out of 269 instances, which have been used in previous works, thus obtaining the best-known performance for the problem. These results are an improvement from any previous procedure found in the literature even when using smaller computing times.  相似文献   

4.
This paper presents an interactive fuzzy goal programming (FGP) approach for bilevel programming problems with the characteristics of dynamic programming (DP).  相似文献   

5.
In this paper, we introduced learning effect into assembly line balancing problems. In many realistic settings, the produced worker(s) (or machine(s)) develops continuously by repeated the same or similar activities. Therefore, the production time of product shortens if it is processed later. We show that polynomial solutions can be obtained for both simple assembly line balancing problem (SALBP) and U-type line balancing problem (ULBP) with learning effect.  相似文献   

6.
A new branch-and-bound algorithm is presented to solve the two-sided assembly line balancing problem of type 1 (TALB-1). First, a pair of two directly facing station is defined as a position, and then the two-sided assembly line (TAL) is relaxed to a one-sided assembly line (OAL). Some new lower bound on positions are computed, and dominance rules and reduction rules for the one-sided assembly line balancing problem of type 1 (OALB-1) are extended and incorporated into a station-oriented assignment procedure for the TALB-1 problem. Finally, the tests are carried out on a well-known benchmark set of problem instances, and experimental results demonstrate that the proposed procedure is efficient.  相似文献   

7.
In this paper, two new algorithms are presented to solve multi-level multi-objective linear programming (ML-MOLP) problems through the fuzzy goal programming (FGP) approach. The membership functions for the defined fuzzy goals of all objective functions at all levels are developed in the model formulation of the problem; so also are the membership functions for vectors of fuzzy goals of the decision variables, controlled by decision makers at the top levels. Then the fuzzy goal programming approach is used to achieve the highest degree of each of the membership goals by minimizing their deviational variables and thereby obtain the most satisfactory solution for all decision makers.  相似文献   

8.
This paper discusses a two stage graph-algorithm, which was designed to solve line balancing problems including practice relevant constraints (GALBP), such as parallel work stations and tasks, cost synergies, processing alternatives, zoning restrictions, stochastic processing times or U-shaped assembly lines. Unlike former procedures, the presented approach can be easily modified to incorporate all of the named extensions. It is not only possible to select and solve single classes of constraints, but rather any combination of them with just slight modifications.  相似文献   

9.
In goal programming problem, the general equilibrium and optimization are often two conflicting factors. This paper proposes a generalized varying-domain optimization method for fuzzy goal programming (FGP) incorporating multiple priorities. According to the three possible styles of the objective function, the varying-domain optimization method and its generalization are proposed. This method can generate the results consistent with the decision-maker (DM)’s expectation, that the goal with higher priority may have higher level of satisfaction. Using this new method, it is a simple process to balance between the equilibrium and optimization, and the result is the consequence of a synthetic decision between them. In contrast to the previous method, the proposed method can make that the higher priority achieving the higher satisfactory degree. To get the global solution of the nonlinear nonconvex programming problem resulting from the original problem and the varying-domain optimization method, the co-evolutionary genetic algorithms (GAs), called GENOCOPIII, is used instead of the SQP method. In this way the DM can get the optimum of the optimization problem. We demonstrate the power of this proposed method by illustrative examples.  相似文献   

10.
In manufacturing, control of ergonomic risks at manual workplaces is a necessity commanded by legislation, care for health of workers and economic considerations. Methods for estimating ergonomic risks of workplaces are integrated into production routines at most firms that use the assembly-type of production. Assembly line re-balancing, i.e., re-assignment of tasks to workers, is an effective and, in case that no additional workstations are required, inexpensive method to reduce ergonomic risks. In our article, we show that even though most ergonomic risk estimation methods involve nonlinear functions, they can be integrated into assembly line balancing techniques at low additional computational cost. Our computational experiments indicate that re-balancing often leads to a substantial mitigation of ergonomic risks.  相似文献   

11.
Manpower scheduling is an intricate problem in production and service environments with the purpose of generating fair schedules that consider employers’ objectives and employees’ preferences as much as possible. However, sometimes, vagueness of information related to employers’ objectives and employees’ preferences leads to the fuzzy nature of the problem. This paper presents a multi-objective manpower scheduling model regarding the lack of clarity on the target values of employers’ objectives and employees’ preferences. Hence, a fuzzy goal programming model is developed for the presented model. Afterwards, two fuzzy solution approaches are used to convert the fuzzy goal programming model to two single-objective models. Finally, the results obtained by both single-objective models are compared with each other to select the solution that has the greatest degree of the satisfaction level of employers’ objectives and employees’ preferences.  相似文献   

12.
The purpose of this paper is to propose a procedure for solving multilevel programming problems in a large hierarchical decentralized organization through linear fuzzy goal programming approach. Here, the tolerance membership functions for the fuzzily described objectives of all levels as well as the control vectors of the higher level decision makers are defined by determining individual optimal solution of each of the level decision makers. Since the objectives are potentially conflicting in nature, a possible relaxation of the higher level decision is considered for avoiding decision deadlock. Then fuzzy goal programming approach is used for achieving highest degree of each of the membership goals by minimizing negative deviational variables. Sensitivity analysis with variation of tolerance values on decision vectors is performed to present how the solution is sensitive to the change of tolerance values. The efficiency of our concept is ascertained by comparing results with other fuzzy programming approaches.  相似文献   

13.
Narasimhan incorporated fuzzy set theory within goal programming formulation in 1980. Since then numerous research has been carried out in this field. One of the well-known models for solving fuzzy goal programming problems was proposed by Hannan in 1981. In this paper the conventional MINMAX approach in goal programming is applied to solve fuzzy goal programming problems. It is proved that the proposed model is an extension to Hannan model that deals with unbalanced triangular linear membership functions. In addition, it is shown that the new model is equivalent to a model proposed in 1991 by Yang et al. Moreover, a weighted model of the new approach is introduced and is compared with Kim and Whang’s model presented in 1998. A numerical example is given to demonstrate the validity and strengths of the new models.  相似文献   

14.
We develop a fuzzy mixed integer non-linear goal programming model for the mid-term assortment planning of supermarkets in which three conflicting objectives namely profitability, customer service, and space utilization are incorporated. The items and brands in a supermarket compete to obtain more space and better shelf level. This model offers different service levels to loyal and disloyal customers, applies joint replenishment policy, and accounts for the holding time limitation of perishable items. We propose a fuzzy approach due to the imprecise nature of the goals’ target levels and priorities as well as critical data. A heuristic method inspiring by the problem-specific rules is developed to solve this complex model approximately within a reasonable time. Finally, the proposed approach is validated through several numerical examples and results are reported.  相似文献   

15.
The simple assembly line balancing problem (SALBP) is a well-studied NP-complete problem for which a new problem database of generated instances was published in 2013. This paper describes the application of a branch, bound, and remember (BB&R) algorithm using the cyclic best-first search strategy to this new database to produce provably exact solutions for 86% of the unsolved problems in this database. A new backtracking rule to save memory is employed to allow the BB&R algorithm to solve many of the largest problems in the database.  相似文献   

16.
This paper addresses a novel approach to deal with Flexible task Time Assembly Line Balancing Problem (FTALBP). In this regard, machines are considered in which operation time of each task can be between lower and upper bounds. These machines can compress the processing time of tasks, but this action may lead to higher cost due to cumulative wear, erosion, fatigue and so on. This cost is described in terms of task time via a linear function. Hence, a bi-criteria nonlinear integer programming model is developed which comprises two inconsistent objective functions: minimizing the cycle time and minimizing the machine total costs. In order to sustain these objectives concurrently, this paper applies the LP-metric method to make a combined dimensionless objective. Moreover, a genetic algorithm (GA) is presented to solve this NP-hard problem and design of experiments (DOE) method is hired to tune various parameters of our proposed algorithm. The computational results demonstrate the effectiveness of implemented procedures.  相似文献   

17.
In this article, we present a new exact algorithm for solving the simple assembly line balancing problem given a determined cycle time (SALBP-1). The algorithm is a station-oriented bidirectional branch-and-bound procedure based on a new enumeration strategy that explores the feasible solutions tree in a non-decreasing idle time order. The procedure uses several well-known lower bounds, dominance rules and a new logical test based on the assimilation of the feasibility problem for a given cycle time and number of stations (SALBP-F) to a maximum-flow problem.  相似文献   

18.
Kim and Whang use a tolerance approach for solving fuzzy goal programming problems with unbalanced membership functions [J.S. Kim, K. Whang, A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function, European Journal of Operational Research 107 (1998) 614–624]. In this note it is shown that some results in that article are incorrect. The necessary corrections are proposed.  相似文献   

19.
In production systems of automobile manufacturers, multi-variant products are assembled on paced final assembly lines. The assignment of operations to workplaces and workers deter mines the productivity of the manufacturing process. In research, various exact and heuristic solution procedures have been developed for different versions of the so-called assembly line balancing problem.  相似文献   

20.
Two new heuristic algorithms for solving cost-oriented assembly line balancing problems -the Wage-Rate-Method (WR) and the Wage-Rate-Smoothing-Method (WRS) — are presented and compared with two known heuristics — the Positional-Weight-Method (PW) and the Positional-Weight-Wage-Rate-Difference-Method (PWWD) with respect to their solution qualities. Firstly, the heuristics are outlined and their computational effort is stated. Then, a theoretical worst-case bound for the solution quality is given and the results of an extensive performance study are reported. In the study the heuristics were investigated with respect to their solution quality by solving randomly generated line balancing problems and problems from literature. It can be concluded that PWWD and WRS are generally superior to PW and WR.Parts of this research have been supported by the Stiftung Industrieforschung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号