首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
We present a new method, called UTAGMS, for multiple criteria ranking of alternatives from set A using a set of additive value functions which result from an ordinal regression. The preference information provided by the decision maker is a set of pairwise comparisons on a subset of alternatives AR ⊆ A, called reference alternatives. The preference model built via ordinal regression is the set of all additive value functions compatible with the preference information. Using this model, one can define two relations in the set A: the necessary weak preference relation which holds for any two alternatives a, b from set A if and only if for all compatible value functions a is preferred to b, and the possible weak preference relation which holds for this pair if and only if for at least one compatible value function a is preferred to b. These relations establish a necessary and a possible ranking of alternatives from A, being, respectively, a partial preorder and a strongly complete relation. The UTAGMS method is intended to be used interactively, with an increasing subset AR and a progressive statement of pairwise comparisons. When no preference information is provided, the necessary weak preference relation is a weak dominance relation, and the possible weak preference relation is a complete relation. Every new pairwise comparison of reference alternatives, for which the dominance relation does not hold, is enriching the necessary relation and it is impoverishing the possible relation, so that they converge with the growth of the preference information. Distinguishing necessary and possible consequences of preference information on the complete set of actions, UTAGMS answers questions of robustness analysis. Moreover, the method can support the decision maker when his/her preference statements cannot be represented in terms of an additive value function. The method is illustrated by an example solved using the UTAGMS software. Some extensions of the method are also presented.  相似文献   

2.
Additive utility function models are widely used in multiple criteria decision analysis. In such models, a numerical value is associated to each alternative involved in the decision problem. It is computed by aggregating the scores of the alternative on the different criteria of the decision problem. The score of an alternative is determined by a marginal value function that evolves monotonically as a function of the performance of the alternative on this criterion. Determining the shape of the marginals is not easy for a decision maker. It is easier for him/her to make statements such as “alternative a is preferred to b”. In order to help the decision maker, UTA disaggregation procedures use linear programming to approximate the marginals by piecewise linear functions based only on such statements. In this paper, we propose to infer polynomials and splines instead of piecewise linear functions for the marginals. In this aim, we use semidefinite programming instead of linear programming. We illustrate this new elicitation method and present some experimental results.  相似文献   

3.
We present a new multiple criteria sorting method that aims at assigning actions evaluated on multiple criteria to p pre-defined and ordered classes. The preference information supplied by the decision maker (DM) is a set of assignment examples on a subset of actions relatively well known to the DM. These actions are called reference actions. Each assignment example specifies a desired assignment of a corresponding reference action to one or several contiguous classes. The set of assignment examples is used to build a preference model of the DM represented by a set of general additive value functions compatible with the assignment examples. For each action a, the method computes two kinds of assignments to classes, concordant with the DM’s preference model: the necessary assignment and the possible assignment. The necessary assignment specifies the range of classes to which the action can be assigned considering all compatible value functions simultaneously. The possible assignment specifies, in turn, the range of classes to which the action can be assigned considering any compatible value function individually. The compatible value functions and the necessary and possible assignments are computed through the resolution of linear programs.  相似文献   

4.
We present a new method called UTAGMSINT for ranking a finite set of alternatives evaluated on multiple criteria. It belongs to the family of Robust Ordinal Regression (ROR) methods which build a set of preference models compatible with preference information elicited by the Decision Maker (DM). The preference model used by UTAGMSINT is a general additive value function augmented by two types of components corresponding to “bonus” or “penalty” values for positively or negatively interacting pairs of criteria, respectively. When calculating value of a particular alternative, a bonus is added to the additive component of the value function if a given pair of criteria is in a positive synergy for performances of this alternative on the two criteria. Similarly, a penalty is subtracted from the additive component of the value function if a given pair of criteria is in a negative synergy for performances of the considered alternative on the two criteria. The preference information elicited by the DM is composed of pairwise comparisons of some reference alternatives, as well as of comparisons of some pairs of reference alternatives with respect to intensity of preference, either comprehensively or on a particular criterion. In UTAGMSINT, ROR starts with identification of pairs of interacting criteria for given preference information by solving a mixed-integer linear program. Once the interacting pairs are validated by the DM, ROR continues calculations with the whole set of compatible value functions handling the interacting criteria, to get necessary and possible preference relations in the considered set of alternatives. A single representative value function can be calculated to attribute specific scores to alternatives. It also gives values to bonuses and penalties. UTAGMSINT handles quite general interactions among criteria and provides an interesting alternative to the Choquet integral.  相似文献   

5.
The assessment of additive value functions in Multicriteria Decision Aid (MCDA) has to face issues of legitimacy and technical difficulties when real decision makers are involved. This paper presents a synergy of three complementary techniques to assess additive models on the whole criteria space. The synergy includes a revised MACBETH technique, the standard MAUT trade-off analysis and UTA-based methods for the assessment of both the marginal value functions and the weighting factors. The paper uses a set of original robustness measures and rules associated with revised MACBETH and UTA in order to manage multiple linear programming solutions and to extract robust conclusions from them. Finally, to illustrate the methods’ synergy, an application example is presented, dealing with the planning of metro extension lines.  相似文献   

6.
In multiple criteria decision aiding, it is common to use methods that are capable of automatically extracting a decision or evaluation model from partial information provided by the decision maker about a preference structure. In general, there is more than one possible model, leading to an indetermination which is dealt with sometimes arbitrarily in existing methods. This paper aims at filling this theoretical gap: we present a novel method, based on the computation of the analytic center of a polyhedron, for the selection of additive value functions that are compatible with holistic assessments of preferences. We demonstrate the most important characteristics of this technique with an experimental and comparative study of several existing methods belonging to the UTA family.  相似文献   

7.
We consider a problem of ranking alternatives based on their deterministic performance evaluations on multiple criteria. We apply additive value theory and assume the Decision Maker’s (DM) preferences to be representable with general additive monotone value functions. The DM provides indirect preference information in form of pair-wise comparisons of reference alternatives, and we use this to derive the set of compatible value functions. Then, this set is analyzed to describe (1) the possible and necessary preference relations, (2) probabilities of the possible relations, (3) ranges of ranks the alternatives may obtain, and (4) the distributions of these ranks. Our work combines previous results from Robust Ordinal Regression, Extreme Ranking Analysis and Stochastic Multicriteria Acceptability Analysis under a unified decision support framework. We show how the four different results complement each other, discuss extensions of the main proposal, and demonstrate practical use of the approach by considering a problem of ranking 20 European countries in terms of 4 criteria reflecting the quality of their universities.  相似文献   

8.
9.
We introduce the concept of a representative value function in robust ordinal regression applied to multiple criteria ranking and choice problems. The proposed method can be seen as a new interactive UTA-like procedure, which extends the UTAGMS and GRIP methods. The preference information supplied by the decision maker (DM) is composed of a partial preorder and intensities of preference on a subset of reference alternatives. Robust ordinal regression builds a set of general additive value functions which are compatible with the preference information, and returns two binary preference relations: necessary and possible. They identify recommendations which are compatible with all or at least one compatible value function, respectively. In this paper, we propose a general framework for selection of a representative value function from among the set of compatibles ones. There are a few targets which build on results of robust ordinal regression, and could be attained by a representative value function. In general, according to the interactively elicited preferences of the DM, the representative value function may emphasize the advantage of some alternatives over the others when all compatible value functions acknowledge this advantage, or reduce the ambiguity in the advantage of some alternatives over the others when some compatible value functions acknowledge an advantage and other ones acknowledge a disadvantage. The basic procedure is refined by few extensions. They enable emphasizing the advantage of alternatives that could be considered as potential best options, accounting for intensities of preference, or obtaining a desired type of the marginal value functions.  相似文献   

10.
Concerns about environmental and social effects have made Multi-Criteria Decision Making (MCDM) increasingly popular. Decision making in complex contexts often – possibly always – requires addressing an aggregation of multiple issues to meet social, economic, legal, technical, and environmental objectives. These values at stake may affect different stakeholders through distributional effects characterized by a high and heterogeneous uncertainty that no social actors can completely control or understand. On this basis, we present a new process framework that aims to support participatory decision making under uncertainty: the range-based Multi-Actor Multi-Criteria Analysis (range-based MAMCA). On the one hand, the process framework explicitly considers stakeholders’ objectives at an output level of aggregation. On the other hand, by means of a Monte Carlo analysis, the method also provides an exploratory scenario approach that enables the capture of the uncertainty, which stems from the complex context evolution. Range-based MAMCA offers a unique participatory process framework that enables us (1) to identify the alternatives pros and cons for each stakeholder group; (2) to provide probabilities about the risk of supporting mistaken, or at least ill-suited, decisions because of the uncertainty regarding to the decision-making context; (3) to take the decision-makers’ limited control of the actual policy effects over the implementation of one or several options into account. The range-based MAMCA framework is illustrated by means of our first case study that aimed to assess French stakeholders’ support for different biofuel options by 2030.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号