首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a continuous-time, single-echelon, multi-location inventory model with Poisson demand processes. In case of a stock-out at a local warehouse, a demand can be fulfilled via a lateral transshipment (LT). Each warehouse is assigned a pre-determined sequence of other warehouses where it will request for an LT. However, a warehouse can hold its last part(s) back from such a request. This is called a hold back pooling policy, where each warehouse has hold back levels determining whether a request for an LT by another warehouse is satisfied. We are interested in the fractions of demand satisfied from stock (fill rate), via an LT, and via an emergency procedure from an external source. From these, the average costs of a policy can be determined. We present a new approximation algorithm for the evaluation of a given policy, approximating the above mentioned fractions. Whereas algorithms currently known in the literature approximate the stream of LT requests from a warehouse by a Poisson process, we use an interrupted Poisson process. This is a process that is turned alternatingly On and Off for exponentially distributed durations. This leads to the On/Off overflow algorithm. In a numerical study we show that this algorithm is significantly more accurate than the algorithm based on Poisson processes, although it requires a longer computation time. Furthermore, we show the benefits of hold back levels, and we illustrate how our algorithm can be used in a heuristic search for the setting of the hold back levels.  相似文献   

2.
Stock Rationing in a Continuous Review Two-Echelon Inventory Model   总被引:1,自引:0,他引:1  
In this paper we consider a 1-warehouse, N-retailer inventory system where demand occurs at all locations. We introduce an inventory model which allows us to set different service levels for retailers and direct customer demand at the warehouse. For each retailer a critical level is defined, such that a retailer replenishment order is delivered from warehouse stock if and only if the stock level exceeds this critical level. It is assumed that retailer replenishment orders, which are not satisfied from warehouse stock, are delivered directly from the outside supplier, instead of being backlogged. We present an analytical upper bound on the total cost of the system, and develop a heuristic method to optimize the policy parameters. Numerical experiments indicate that our technique provides a very close approximation of the exact cost. Also, we show that differentiating among the retailers and direct customer demand can yield significant cost reductions.  相似文献   

3.
We consider a joint facility location–allocation and inventory problem that incorporates multiple sources of warehouses. The problem is motivated by a real situation faced by a multinational applied chemistry company. In this problem, multiple products are produced in several plants. Warehouse can be replenished by several plants together because of capabilities and capacities of plants. Each customer in this problem has stochastic demand and certain amount of safety stock must be maintained in warehouses so as to achieve certain customer service level. The problem is to determine number and locations of warehouses, allocation of customers demand and inventory levels of warehouses. The objective is to minimize the expected total cost with the satisfaction of desired demand weighted average customer lead time and desired cycle service level. The problem is formulated as a mixed integer nonlinear programming model. Utilizing approximation and transformation techniques, we develop an iterative heuristic method for the problem. An experiment study shows that the proposed procedure performs well in comparison with a lower bound.  相似文献   

4.
Service differentiation through selective lateral transshipments   总被引:1,自引:0,他引:1  
We consider a multi-item spare parts problem with multiple warehouses and two customer classes, where lateral transshipments are used as a differentiation tool. Specifically, premium requests that cannot be met from stock at their preferred warehouse may be satisfied from stock at other warehouses (so-called lateral transshipments). We first derive approximations for the mean waiting time per class in a single-item model with selective lateral transshipments. Next, we embed our method in a multi-item model minimizing the holding costs and costs of lateral and emergency shipments from upstream locations in the network. Compared to the option of using only selective emergency shipments for differentiation, the addition of selective lateral transshipments can lead to significant further cost savings (14% on average).  相似文献   

5.
We study real-time demand fulfillment for networks consisting of multiple local warehouses, where spare parts of expensive technical systems are kept on stock for customers with different service contracts. Each service contract specifies a maximum response time in case of a failure and hourly penalty costs for contract violations. Part requests can be fulfilled from multiple local warehouses via a regular delivery, or from an external source with ample capacity via an expensive emergency delivery. The objective is to minimize delivery cost and penalty cost by smartly allocating items from the available network stock to arriving part requests. We propose a dynamic allocation rule that belongs to the class of one-step lookahead policies. To approximate the optimal relative cost, we develop an iterative calculation scheme that estimates the expected total cost over an infinite time horizon, assuming that future demands are fulfilled according to a simple static allocation rule. In a series of numerical experiments, we compare our dynamic allocation rule with the optimal allocation rule, and a simple but widely used static allocation rule. We show that the dynamic allocation rule has a small optimality gap and that it achieves an average cost reduction of 7.9% compared to the static allocation rule on a large test bed containing problem instances of real-life size.  相似文献   

6.
In this paper, we develop a deterministic inventory model with two warehouses (one is the existing storage known as own warehouse (OW) and the other is hired on rental basis known as rented warehouse (RW). The model allows different levels of item deterioration in both warehouses. The demand rate is supposed to be a linear (increasing) function of time and the replenishment rate is infinite. The stock is transferred from RW to OW in continuous release pattern and the associated transportation cost is taken into account. Shortages in OW are allowed and excess demand is backlogged. For the general model, we give the equations for the optimal policy and cost function and we discuss some special cases. A numerical example is given to illustrate the solution procedure of the model. Finally, based on this example, we conduct a sensitivity analysis of the model.  相似文献   

7.
In this paper, we study the inventory system of an online retailer with compound Poisson demand. The retailer normally replenishes its inventory according to a continuous review (nQR) policy with a constant lead time. Usually demands that cannot be satisfied immediately are backordered. We also assume that the customers will accept a reasonable waiting time after they have placed their orders because of the purchasing convenience of the online system. This means that a sufficiently short waiting time incurs no shortage costs. We call this allowed waiting time “committed service time”. After this committed service time, if the retailer is still in shortage, the customer demand must either be satisfied with an emergency supply that takes no time (which is financially equivalent to a lost sale) or continue to be backordered with a time-dependent backorder cost. The committed service time gives an online retailer a buffer period to handle excess demands. Based on real-time information concerning the outstanding orders of an online retailer and the waiting times of its customers, we provide a decision rule for emergency orders that minimizes the expected costs under the assumption that no further emergency orders will occur. This decision rule is then used repeatedly as a heuristic. Numerical examples are presented to illustrate the model, together with a discussion of the conditions under which the real-time decision rule provides considerable cost savings compared to traditional systems.  相似文献   

8.
This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.  相似文献   

9.
A model is proposed for the simultaneous location of plants and warehouses among a given set of possible locations in order to satisfy a given demand at minimum cost. The demand of each customer may be satisfied directly from a plant or through a warehouse. The model also applies to the design of a distribution network with two levels of warehouses. A branch-and-bound algorithm, which generalizes previous work by Efroymson and Ray and others, is presented, computational experience is reported on.  相似文献   

10.
A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer??s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC.  相似文献   

11.
In this paper, a deterministic inventory model for deteriorating items with two warehouses is developed. A rented warehouse is used when the ordering quantity exceeds the limited capacity of the owned warehouse, and it is assumed that deterioration rates of items in the two warehouses may be different. In addition, we allow for shortages in the owned warehouse and assume that the backlogging demand rate is dependent on the duration of the stockout. We obtain the condition when to rent the warehouse and provide simple solution procedures for finding the maximum total profit per unit time. Further, we use a numerical example to illustrate the model and conclude the paper with suggestions for possible future research.  相似文献   

12.
A two-stage distribution planning problem, in which customers are to be served with different commodities from a number of plants, through a number of intermediate warehouses is addressed. The possible locations for the warehouses are given. For each location, there is an associated fixed cost for opening the warehouse concerned, as well as an operating cost and a maximum capacity. The demand of each customer for each commodity is known, as are the shipping costs from a plant to a possible warehouse and thereafter to a customer. It is required to choose the locations for opening warehouses and to find the shipping schedule such that the total cost is minimized. The problem is modelled as a mixed-integer programming problem and solved by branch and bound. The lower bounds are calculated through solving a minimum-cost, multicommodity network flow problem with capacity constraints. Results of extensive computational experiments are given.  相似文献   

13.
了研究应急救援物流中存在物资单向转运条件下的受灾点库存策略,考虑由多个受灾点组成的单阶段系统,
各个受灾点之间存在单向转运.首先在各个受灾点物资进货点一定条件下,建立模型确定各个受灾点救援物资
需求依靠从其它受灾点转运得到满足的比例和直接从本身库存中得到满足的比例;其次,建立各个受灾点
救援物资进货水平优化的整数非线性规划模型,并考虑基于时间窗的救援效率水平约束,设计基于隐含
枚举法的模型求解算法;最后,运用算例对模型及其求解算法进行了模拟运算,从而验证了模型的有效性和实用性.  相似文献   

14.
We consider a multi-item two-echelon spare part inventory system in which the central warehouse operates under an (nQ,?R) policy and the local warehouses implement order-up-to S policy, each facing a compound Poisson demand. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering costs subject to an aggregate mean response time constraint at each warehouse. In this paper, we propose four alternative approximations for the steady state performance of the system; and extend a heuristic and a lower bound proposed under Poisson demand assumption to the compound Poisson setting. In a computational study, we show that the performances of the approximations, the heuristic, and the lower bound are quite satisfactory; and the relative cost saving of setting an aggregate service level rather than individually for each part is quite high.  相似文献   

15.
We study the inventory management problem of a service center operating in a decentralized service parts network. The service centers collaborate through inventory and service pooling, and through sharing information on the inventory status. Upon demand arrival, a service center may request a part from the other center, in which case a payment is made. Under this competitive and collaborative environment, we first characterize the optimal operating policy of an individual service center. Through computational analysis we identify the conditions under which pooling is most beneficial to the service center, and make an assessment of different pooling strategies which are commonly adopted in practice and in the literature. Finally, we analyze the effect of interaction between the centers on the benefit of pooling.  相似文献   

16.
In this paper, we propose a two-stage stochastic model to address the design of an integrated location and two-echelon inventory network under uncertainty. The central issue in this problem is to design and operate an effective and efficient multi-echelon supply chain distribution network and to minimize the expected system-wide cost of warehouse location, the allocation of warehouses to retailers, transportation, and two-echelon inventory over an infinite planning horizon. We structure this problem as a two-stage nonlinear discrete optimization problem. The first stage decides the warehouses to open and the second decides the warehouse-retailer assignments and two-echelon inventory replenishment strategies. Our modeling strategy incorporates various probable scenarios in the integrated multi-echelon supply chain distribution network design to identify solutions that minimize the first stage costs plus the expected second stage costs. The two-echelon inventory cost considerations result in a nonlinear objective which we linearize with an exponential number of variables. We solve the problem using column generation. Our computational study indicates that our approach can solve practical problems of moderate-size with up to twenty warehouse candidate locations, eighty retailers, and ten scenarios efficiently.  相似文献   

17.
We consider a time-based inventory control policy for a two-level supply chain with one warehouse and multiple retailers in this paper. Let the warehouse order in a fixed base replenishment interval. The retailers are required to order in intervals that are integer-ratio multiples of the base replenishment interval at the warehouse. The warehouse and the retailers each adopt an order-up-to policy, i.e. order the needed stock at a review point to raise the inventory position to a fixed order-up-to level. It is assumed that the retailers face independent Poisson demand processes and no transshipments between them are allowed. The contribution of the study is threefold. First, we assume that when facing a shortage the warehouse allocates the remaining stock to the retailers optimally to minimize system cost in the last minute before delivery and provide an approach to evaluate the exact system cost. Second, we characterize the structural properties and develop an exact optimal solution for the inventory control system. Finally, we demonstrate that the last minute optimal warehouse stock allocation rule we adopt dominates the virtual allocation rule in which warehouse stock is allocated to meet retailer demand on a first-come first-served basis with significant cost benefits. Moreover, the proposed time-based inventory control policy can perform equally well or better than the commonly used stock-based batch-ordering policy for distribution systems with multiple retailers.  相似文献   

18.
Large-scale inventory-distribution systems typically comprise a hierarchy of warehouses that stock goods for distribution to retailers at which demand for these goods originates. This paper develops an inventory model for two-echelon distribution systems under the assumption that the central warehouse and retailers order periodically. Characteristics of the optimal policy are described. An iterative solution procedure is presented to find optimal or near optimal operating-policy variables. Solutions of the model to a large number of test examples show that the model outperforms other existing models in the literature without sacrificing the computation time. Tested against the lower bounds on the optimal average annual variable cost obtained by removing some of the ordering costs, the solutions of the present model are found to be near optimal.  相似文献   

19.
In this paper a deterministic inventory model is developed for a single deteriorating item which is stored in two different warehouses. A rented warehouse is used to store the excess units over the fixed capacity W of the own warehouse. The rented warehouse is assumed to charge higher unit holding cost than the own warehouse, but to offer a better preserving facility resulting in a lower rate of deterioration for the goods than the own warehouse. The optimal stock level for the beginning of the period is found and the model developed is shown to agree with the order level model for non deteriorating items with a single storage facility. An illustration to show the applicability of the model is also presented.  相似文献   

20.
分析了停产后服务备件的三种存储模式,以主要基层仓库和常规基层仓库模式为基本模式,建立了选址库存模型,将两级库存体系不变模式和单级库存体系模式作为特例加以讨论,并设计了基于遗传算法的迭代算法求解选址库存问题,通过仿真算例验证了模型和方法的可行性和有效性.通过分析,主要基层仓库和常规基层仓库模式能够将成本优势与客户服务水平良好结合,是一种较好的模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号