首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
We consider the late accumulation stage, followed by the full decumulation stage, of an investor in a defined contribution (DC) pension plan. The investor’s portfolio consists of a stock index and a bond index. As a measure of risk, we use conditional value at risk (CVAR) at the end of the decumulation stage. This is a measure of the risk of depleting the DC plan, which is primarily driven by sequence of return risk and asset allocation during the decumulation stage. As a measure of reward, we use Ambition, which we define to be the probability that the terminal wealth exceeds a specified level. We develop a method for computing the optimal dynamic asset allocation strategy which generates points on the efficient Ambition-CVAR frontier. By examining the Ambition-CVAR efficient frontier, we can determine points that are Median-CVAR optimal. We carry out numerical tests comparing the Median-CVAR optimal strategy to a benchmark constant proportion strategy. For a fixed median value (from the benchmark strategy) we find that the optimal Median-CVAR control significantly improves the CVAR. In addition, the median allocation to stocks at retirement is considerably smaller than the benchmark allocation to stocks.  相似文献   

2.
In a financial market with one riskless asset and n risky assets whose prices are lognormal, we solve in a closed form the problem of a pension fund maximizing the expected CRRA utility of its surplus till the (stochastic) death time of a representative agent. We consider a unique asset allocation problem for both accumulation and decumulation phases. The optimal investment in the risky assets must decrease during the first phase and increase during the second one. We accordingly suggest it is not optimal to manage the two phases separately, and outsourcing of allocation decisions should be avoided in both phases. JEL: G23, G11 MSC 2000: 62P05, 91B28, 91B30, 91B70, 93E20  相似文献   

3.
In this paper, we consider the optimal dynamic asset allocation of pension fund with mortality risk and salary risk. The managers of the pension fund try to find the optimal investment policy (optimal asset allocation) to maximize the expected utility of terminal wealth. The market is a combination of financial market and insurance market. The financial market consists of three assets: cashes with stochastic interest rate, stocks and rolling bonds, while the insurance market consists of mortality risk and salary risk. These two non-hedging risks cause incompleteness of the market. By martingale method and dynamic programming principle we first derive the approximate optimal investment policy to overcome the difficulty, then investigate the efficiency of the approximation. Finally, we solve an optimal assets liabilities management(ALM) problem with mortality risk and salary risk under CRRA utility, and reveal the influence of these two risks on the optimal investment policy by numerical illustration.  相似文献   

4.
The Internet has provided traditional retailers a new means with which to serve customers. Consequently, many “bricks-and-mortar” retailers have transformed to “clicks-and-mortar” by incorporating Internet sales. Examples of companies making such a transition include Best Buy, Wal-Mart, Barnes & Noble, etc. Despite the increasing prevalence of this practice, several fundamental questions remain: (1) Does it pay off to go online? (2) Which is the equilibrium industry structure? (3) What is the implication of this business model for consumers? We study these issues in an oligopoly setting and show that clicks-and-mortar arises as the equilibrium channel structure. However, we find that this equilibrium does not necessarily imply higher profits for the firms: in some cases, rather, it emerges as a strategic necessity. Consumers are generally better off with clicks-and-mortar retailers. If firms align with pure e-tailers to reach the online market, we show that a prisoner’s dilemma-type equilibrium may arise.  相似文献   

5.
Given the prevalence of both supplier selection and inventory control problems in supply chain management, this article addresses these problems simultaneously by developing a mathematical model for a serial system. This model determines an optimal inventory policy that coordinates the transfer of items between consecutive stages of the system while properly allocating orders to selected suppliers in stage 1. In addition, a lower bound on the minimum total cost per time unit is obtained and a 98% effective power-of-two (POT) inventory policy is derived for the system under consideration. This POT algorithm is advantageous since it is simple to compute and yields near optimal solutions.  相似文献   

6.
This article analyzes the fleet management problem faced by a firm when deciding which vehicles to add to its fleet. Such a decision depends not only on the expected mileage and tasks to be assigned to the vehicle but also on the evolution of fuel and CO2 emission prices and on fuel efficiency. This article contributes to the literature on fleet replacement and sustainable operations by proposing a general decision support system for the fleet replacement problem using stochastic programming and conditional value at risk (CVaR) to account for uncertainty in the decision process. The article analyzes how the CVaR associated with different types of vehicle is affected by the parameters in the model by reporting on the results of a real-world case study.  相似文献   

7.
A simulation and decision support system, RealOpt©, for planning large-scale emergency dispensing clinics to respond to biological threats and infectious disease outbreaks is described. The system allows public health administrators to investigate clinic design and staffing scenarios quickly. RealOpt© incorporates efficient optimization technology seamlessly interfaced with a simulation module. The system's correctness and computational advantage are validated via comparisons against simulation runs of the same model developed on a commercial system. Simulation studies to explore facility layout and staffing scenarios for smallpox vaccination and for an actual anthrax-treatment dispensing exercise and post event analysis are presented. The system produces results consistent with the model built on the commercial system, but requires only a fraction of the computational time. Each smallpox scenario runs within 1 CPU minute on RealOpt©, versus run times of over 5–10 h on the commercial system. The system's fast computational time enables its use in large-scale studies, in particular an anthrax response planning exercise involving a county with 864,000 households. The computational effort required for this exercise was roughly 30 min for all scenarios considered, demonstrating that RealOpt© offers a very promising avenue for pursuing a comprehensive investigation involving a more diverse set of scenarios, and justifying work towards development of a robust system that can be widely deployed for use by state, local, and tribal health practitioners. Using our staff allocation and assignments for the Anthrax field exercise, DeKalb county achieved the highest throughput among all counties that simultaneously conducted the same scale of Anthrax exercise at various locations, with labor usage at or below the other counties. Indeed, DeKalb exceeded the targeted number of households, and it processed 50% more individuals compared to the second place county. None of the other counties achieved the targeted number of households. The external evaluators commented that DeKalb produced the most efficient floor plan (with no path crossing), the most cost-effective dispensing (lowest labor/throughput value), and the smoothest operations (shortest average wait time, average queue length, equalized utilization rate). The study proves that even without historical data, using our system one can plan ahead and be able to wisely estimate the required labor resources. The exercise also revealed many areas that need attention during the operations planning and design of dispensing centers. The type of disaster being confronted (e.g., biological attack, infectious disease outbreak, or a natural disaster) also dictates different design considerations with respect to the dispensing clinic, facility locations, dispensing and backup strategies, and level of security protection. Depending on the situation, backup plans will be different, and the level of security and military personnel, as well as the number of healthcare workers required, will vary. In summary, the study shows that a real-time decision support system is viable through careful design of a stand-alone simulator coupled with powerful tailor-designed optimization solvers. The flexibility of performing empirical tests quickly means the system is amenable for use in training and preparation, and for strategic planning before and during an emergency situation. The system facilitates analysis of “what-if'' scenarios, and serves as an invaluable tool for operational planning and dynamic on-the-fly reconfigurations of large-scale emergency dispensing clinics. It also allows for “virtual field exercises” to be performed on the decision support system, offering insight into operations flow and bottlenecks when mass dispensing is required for a region with a large population. The system, designed in modular form with a flexible implementation, enables future expansion and modification regarding emergency center design with respect to treatment for different biological threats or disease outbreaks. Working with emergency response departments, further fine-tuning and development of the system will be made to address different biological attacks and infectious disease outbreaks, and to ensure its practicality and usability.  相似文献   

8.
This study proposes a model that clarifies how disaster warning issuance conditions affect “cry wolf” syndrome. The disaster assumed in this study is landslide caused by heavy rainfall. Local authorities that issue disaster warnings are thought to tend to avoid the situation where casualty occurs without the issuance to residents of a disaster warning. As a result, the issuance conditions may be relaxed. Under this circumstance, however, the residents are thought to tend to ignore disaster warnings, since such warnings are inaccurate. Thus may emerge the “cry wolf” syndrome. In this study, a simulation model that expresses the behaviors of the local authority and the residents has been developed. For the purpose of demonstrating the model, numerical experiments were then carried out. In the numerical experiments, the effects of optimal issuance conditions for disaster warnings on the cost incurred by the resident were evaluated by using assumed parameters for the model.  相似文献   

9.
We have developed an internet-based management game to illustrate the economic and organisational decision-making process in a hospital by using discrete event simulation. Up to six hospitals compete against each other for inpatients with different disease categories and budget depending on hospital mission, regional health policy, inpatient reimbursement system (day-, case- and global-budget based) as well as labour and radiology technology market for 12 decision periods. Players can evaluate alternative actions for capacity planning as well as patient scheduling and control problems depending on different game situations. The uniqueness of COREmain hospital game consists of the internet-based framework, the combination of resource, process and financial result management, the competition of hospitals within a region and the consideration of different inpatient reimbursement systems. The deployment of this game in teaching, policy and research might improve policy making both at a hospital, regional and national level and also induce further research in these fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号