首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extrapolation with a parallel splitting method is discussed. The parallel splitting method reduces a multidimensional problem into independent one-dimensional problems and can improve the convergence order of space variables to an order as high as the regularity of the solution permits. Therefore, in order to match the convergence order of the space variables, a high order method should also be used for the time integration. Second and third order extrapolation methods are used to improve the time convergence and it was found that the higher order extrapolation method can produce a more accurate solution than the lower order extrapolation method, but the convergence order of high order extrapolation may be less than the actual order of the extrapolation. We also try to show a fact that has not been studied in the literature, i.e. when the extrapolation is used, it may decrease the convergence of the space variables. The higher the order of the extrapolation method, the more it decreases the convergence of the space variables. The global extrapolation method also improves the parallel degree of the parallel splitting method. Numerical tests in the paper are done in a domain of a unit circle and a unit square.Supported by the Academy of Finland.  相似文献   

2.
In this paper, we investigate the convergence behavior of a Runge–Kutta type modified Landweber method for nonlinear ill-posed operator equations. In order to improve the stability and convergence of the Landweber iteration, a 2-stage Gauss-type Runge–Kutta method is applied to the continuous analogy of the modified Landweber method, to give a new modified Landweber method, called R–K type modified Landweber method. Under some appropriate conditions, we prove the convergence of the proposed method. We conclude with a numerical example confirming the theoretical results, including comparisons to the modified Landweber iteration.  相似文献   

3.
We study convergence properties of a numerical method for convection-diffusion problems with characteristic layers on a layer-adapted mesh. The method couples standard Galerkin with an h-version of the nonsymmetric discontinuous Galerkin finite element method with bilinear elements. In an associated norm, we derive the error estimate as well as the supercloseness result that are uniform in the perturbation parameter. Applying a post-processing operator for the discontinuous Galerkin method, we construct a new numerical solution with enhanced convergence properties.  相似文献   

4.
This paper deals with convergence analysis and applications of a Zienkiewicz-type (Z-type) triangular element, applied to fourth-order partial differential equations. For the biharmonic problem we prove the order of convergence by comparison to a suitable modified Hermite triangular finite element. This method is more natural and it could be applied to the corresponding fourth-order eigenvalue problem. We also propose a simple postprocessing method which improves the order of convergence of finite element eigenpairs. Thus, an a posteriori analysis is presented by means of different triangular elements. Some computational aspects are discussed and numerical examples are given.  相似文献   

5.
In this paper, the problems of convergence and superlinear convergence of continuous-time waveform relaxation method applied to Volterra type systems of neutral functional-differential equations are discussed. Under a Lipschitz condition with time- and delay-dependent right-hand side imposed on the so-called splitting function, more suitable conditions about convergence and superlinear convergence of continuous-time WR method are obtained. We also investigate the initial interval acceleration strategy for the practical implementation of the continuous-time waveform relaxation method, i.e., discrete-time waveform relaxation method. It is shown by numerical results that this strategy is efficacious and has the essential acceleration effect for the whole computation process.  相似文献   

6.
The rates of convergence of two Schwarz alternating methods are analyzed for the iterative solution of a discrete problem which arises when orthogonal spline collocation with piecewise Hermite bicubics is applied to the Dirichlet problem for Poisson's equation on a rectangle. In the first method, the rectangle is divided into two overlapping subrectangles, while three overlapping subrectangles are used in the second method. Fourier analysis is used to obtain explicit formulas for the convergence factors by which theH 1-norm of the errors is reduced in one iteration of the Schwarz methods. It is shown numerically that while these factors depend on the size of overlap, they are independent of the partition stepsize. Results of numerical experiments are presented which confirm the established rates of convergence of the Schwarz methods.This research was supported in part by funds from the National Science Foundation grant CCR-9103451.  相似文献   

7.
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an efficient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear systems arising during the Newton iterations. The work of the second author was partially supported by a National Science Foundation Postdoctoral Research Fellowship.  相似文献   

8.
A numerical method based on B-spline is developed to solve the general nonlinear two-point boundary value problems up to order 6. The standard formulation of sextic spline for the solution of boundary value problems leads to non-optimal approximations. In order to derive higher orders of accuracy, high order perturbations of the problem are generated and applied to construct the numerical algorithm. The error analysis and convergence properties of the method are studied via Green’s function approach. O(h6) global error estimates are obtained for numerical solution of these classes of problems. Numerical results are given to illustrate the efficiency of the proposed method. Results of numerical experiments verify the theoretical behavior of the orders of convergence.  相似文献   

9.
In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss–Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.  相似文献   

10.
In this paper, some semismooth methods are considered to solve a nonsmooth equation which can arise from a discrete version of the well-known Hamilton-Jacobi-Bellman equation. By using the slant differentiability introduced by Chen, Nashed and Qi in 2000, a semismooth Newton method is proposed. The method is proved to have monotone convergence by suitably choosing the initial iterative point and local superlinear convergence rate. Moreover, an inexact version of the proposed method is introduced, which reduces the cost of computations and still preserves nice convergence properties. Some numerical results are also reported.  相似文献   

11.
We describe a novel method for minimisation of univariate functions which exhibits an essentially quadratic convergence and whose convergence interval is only limited by the existence of near maxima. Minimisation is achieved through a fixed-point iterative algorithm, involving only the first and second-order derivatives, that eliminates the effects of near inflexion points on convergence, as usually observed in other minimisation methods based on the quadratic approximation. Comparative numerical studies against the standard quadratic and Brent's methods demonstrate clearly the high robustness, high precision and convergence rate of the new method, even when a finite difference approximation is used in the evaluation of the second-order derivative.  相似文献   

12.
The development of an inverse first-order divided difference operator for functions of several variables, as well as a direct computation of the local order of convergence of an iterative method is presented. A generalized algorithm of the secant method for solving a system of nonlinear equations is studied and the maximum computational efficiency is computed. Furthermore, a sequence that approximates the order of convergence is generated for the examples and it confirms in a numerical way that the order of the methods is well deduced.  相似文献   

13.
We consider one of the crucial problems in solving polynomial equations concerning the construction of such initial conditions which provide a safe convergence of simultaneous zero-finding methods. In the first part we deal with the localization of polynomial zeros using disks in the complex plane. These disks are used for the construction of initial inclusion disks which, under suitable conditions, provide the convergence of the Gargantini-Henrici interval method. They also play a key role in the convergence analysis of the fourth order Ehrlich-Aberth method with Newton's correction for the simultaneous approximation of all zeros of a polynomial. For this method we state the initial condition which enables the safe convergence. The initial condition is computationally verifiable since it depends only on initial approximations, which is of practical importance.  相似文献   

14.
We prove the convergence of some multiplicative and additive Schwarz methods for inequalities which contain contraction operators. The problem is stated in a reflexive Banach space and it generalizes the well-known fixed-point problem in the Hilbert spaces. Error estimation theorems are given for three multiplicative algorithms and two additive algorithms. We show that these algorithms are in fact Schwarz methods if the subspaces are associated with a decomposition of the domain. Also, for the one- and two-level methods in the finite element spaces, we write the convergence rates as functions of the overlapping and mesh parameters. They are similar with the convergence rates of these methods for linear problems. Besides the direct use of the five algorithms for the inequalities with contraction operators, we can use the above results to obtain the convergence rate of the Schwarz method for other types of inequalities or nonlinear equations. In this way, we prove the convergence and estimate the error of the one- and two-level Schwarz methods for some inequalities in Hilbert spaces which are not of the variational type, and also, for the Navier–Stokes problem. Finally, we give conditions of existence and uniqueness of the solution for all problems we consider. We point out that these conditions and the convergence conditions of the proposed algorithms are of the same type.  相似文献   

15.
In this work a system of two parabolic singularly perturbed equations of reaction–diffusion type is considered. The asymptotic behaviour of the solution and its partial derivatives is given. A decomposition of the solution in its regular and singular parts has been used for the asymptotic analysis of the spatial derivatives. To approximate the solution we consider the implicit Euler method for time stepping and the central difference scheme for spatial discretization on a special piecewise uniform Shishkin mesh. We prove that this scheme is uniformly convergent, with respect to the diffusion parameters, having first-order convergence in time and almost second-order convergence in space, in the discrete maximum norm. Numerical experiments illustrate the order of convergence proved theoretically.  相似文献   

16.
Recently, Wu et al. [S.-L. Wu, T.-Z. Huang, X.-L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math. 228 (1) (2009) 424-433] introduced a modified SSOR (MSSOR) method for augmented systems. In this paper, we establish a generalized MSSOR (GMSSOR) method for solving the large sparse augmented systems of linear equations, which is the extension of the MSSOR method. Furthermore, the convergence of the GMSSOR method for augmented systems is analyzed and numerical experiments are carried out, which show that the GMSSOR method with appropriate parameters has a faster convergence rate than the MSSOR method with optimal parameters.  相似文献   

17.
This paper will consider the problem of solving the nonlinear system of equations with block-triangular structure. A generalized block Newton method for semismooth sparse system is presented and a locally superlinear convergence is proved. Moreover, locally linear convergence of some parameterized Newton method is shown.  相似文献   

18.
A development of an inverse first-order divided difference operator for functions of several variables is presented. Two generalized derivative-free algorithms built up from Ostrowski’s method for solving systems of nonlinear equations are written and analyzed. A direct computation of the local order of convergence for these variants of Ostrowski’s method is given. In order to preserve the local order of convergence, any divided difference operator is not valid. Two counterexamples of computation of a classical divided difference operator without preserving the order are presented. A rigorous study to know a priori if the new method will preserve the order of the original modified method is presented. The conclusion is that this fact does not depend on the method but on the systems of equations and if the associated divided difference verifies a particular condition. A new divided difference operator solving this problem is proposed. Furthermore, a computation that approximates the order of convergence is generated for the examples and it confirms in a numerical way that the order of the methods is well deduced. This study can be applied directly to other Newton’s type methods where derivatives are approximated by divided differences.  相似文献   

19.
Summary The convergence analysis of a special variant of the additive Schwarz iteration is presented. It can be applied to the frequency decomposition multigrid method and yields robust convergence.  相似文献   

20.
This paper continues the authors' study of the convergence of dynamic iteration methods for large systems of linear initial value problems. We ask for convergence on [0, ) and show how the convergence can be reduced to a graphical test relating the splitting of the matrix to the stability properties of the discretization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号