首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An accurate method for the numerical solution of the eigenvalue problem of second-order ordinary differential equation using the shooting method is presented. The method has three steps. Firstly initial values for the eigenvalue and eigenfunction at both ends are obtained by using the discretized matrix eigenvalue method. Secondly the initial-value problem is solved using new, highly accurate formulas of the linear multistep method. Thirdly the eigenvalue is properly corrected at the matching point. The efficiency of the proposed methods is demonstrated by their applications to bound states for the one-dimensional harmonic oscillator, anharmonic oscillators, the Morse potential, and the modified Pöschl–Teller potential in quantum mechanics.  相似文献   

2.
Summary We consider the numerical solution of systems of nonlinear two point boundary value problems by Galerkin's method. An initial solution is computed with piecewise linear approximating functions and this is then improved by using higher-order piecewise polynomials to compute defect corrections. This technique, including numerical integration, is justified by typical Galerkin arguments and properties of piecewise polynomials rather than the traditional asymptotic error expansions of finite difference methods.  相似文献   

3.
Summary. This paper is concerned with a high order convergent discretization for the semilinear reaction-diffusion problem: , for , subject to , where . We assume that on , which guarantees uniqueness of a solution to the problem. Asymptotic properties of this solution are discussed. We consider a polynomial-based three-point difference scheme on a simple piecewise equidistant mesh of Shishkin type. Existence and local uniqueness of a solution to the scheme are analysed. We prove that the scheme is almost fourth order accurate in the discrete maximum norm, uniformly in the perturbation parameter . We present numerical results in support of this result. Received February 25, 1994  相似文献   

4.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University.  相似文献   

5.
6.
We consider linear second order singularly perturbed two-point boundary value problems with interior turning points. Piecewise linear Galerkin finite element methods are constructed on various piecewise equidistant meshes designed for such problems. These methods are proved to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usualL 2 norm. Supporting numerical results are presented.  相似文献   

7.
本文提出了对粘性阻尼线性振动系统的复模态二次广义特征值问题进行高效近似求解的一种新的矩阵摄动分析方法,即先将阻尼矩阵分解为比例阻尼部分和非比例阻尼部分之和,并求得系统的比例阻尼实模态特征解;然后以此为初始值,将阻尼矩阵的非比例部分作为对其比例部分的小量修改,利用摄动分析方法简捷地得到系统的复模态特征值问题的近似解.这一新方法适用于振系阻尼分布不十分偏离比例阻尼情况的问题,因此对大阻尼(非过阻尼)振动系统也有效.这是它优于以前提出的基于无阻尼实模态特征解的类似摄动分析方法的重要特点.文中建立了复模态特征值和特征向量的二阶摄动解式,并通过算例证实了其有效性.此外还讨论了利用比例阻尼假定估计阻尼系统固有振动的复特征值的可行性.  相似文献   

8.
Summary In this paper we give conditions for theB-convergence of Rosenbrock type methods when applied to stiff semi-linear systems. The convergence results are extended to stiff nonlinear systems in singular perturbation form. As a special case partitioned methods are considered. A third order method is constructed.Dedicated to the memory of Professor Lothar Collatz  相似文献   

9.
Summary. The boundary element method (BEM) is of advantage in many applications including far-field computations in magnetostatics and solid mechanics as well as accurate computations of singularities. Since the numerical approximation is essentially reduced to the boundary of the domain under consideration, the mesh generation and handling is simpler than, for example, in a finite element discretization of the domain. In this paper, we discuss fast solution techniques for the linear systems of equations obtained by the BEM (BE-equations) utilizing the non-overlapping domain decomposition (DD). We study parallel algorithms for solving large scale Galerkin BE–equations approximating linear potential problems in plane, bounded domains with piecewise homogeneous material properties. We give an elementary spectral equivalence analysis of the BEM Schur complement that provides the tool for constructing and analysing appropriate preconditioners. Finally, we present numerical results obtained on a massively parallel machine using up to 128 processors, and we sketch further applications to elasticity problems and to the coupling of the finite element method (FEM) with the boundary element method. As shown theoretically and confirmed by the numerical experiments, the methods are of algebraic complexity and of high parallel efficiency, where denotes the usual discretization parameter. Received August 28, 1996 / Revised version received March 10, 1997  相似文献   

10.
We aim at the efficient computation of the rightmost, stability-determining characteristic roots of a system of delay differential equations. The approach we use is based on the discretization of the time integration operator by a linear multistep (LMS) method. The size of the resulting algebraic eigenvalue problem is inversely proportional to the steplength. We summarize theoretical results on the location and numerical preservation of roots. Furthermore, we select nonstandard LMS methods, which are better suited for our purpose. We present a new procedure that aims at computing efficiently and accurately all roots in any right half-plane. The performance of the new procedure is demonstrated for small- and large-scale systems of delay differential equations.  相似文献   

11.
Using a method of stochastic perturbation of a Langevin system associated with the non-viscous Burgers equation we introduce a system of PDE that can be considered as a regularization of the pressureless gas dynamics describing sticky particles. By means of this regularization we describe how starting from smooth data a δ-singularity arises in the component of density. Namely, we find the asymptotics of solution at the point of the singularity formation as the parameter of stochastic perturbation tends to zero. Then we introduce a generalized solution in the sense of free particles (FP-solution) as a special limit of the solution to the regularized system. This solution corresponds to a medium consisting of non-interacting particles. The FP-solution is a bridging step to constructing solutions to the Riemann problem for the pressureless gas dynamics describing sticky particles. We analyze the difference in the behavior of discontinuous solutions for these two models and the relations between them. In our framework we obtain a unique entropy solution to the Riemann problem in 1D case.  相似文献   

12.
Summary Kirchgraber derived in 1988 an integration procedure (called the LIPS-code) for long-term prediction of the solutions of equations which are perturbations of systems having only periodic solutions. His basic idea is to use the Poincaré map to define a new system which can be integrated with large step-size; the method is specially successful when the period is close to the unperturbed one. Obviously the size of the perturbation modifies the period and therefore affects the precision of the algorithm. In this paper we propose a double modification of Kirchgraber's code: to use a first-order approximation of the perturbed period instead of the unperturbed one, and a scheme specially designed for integration of orbits instead of the Runge-Kutta method. We show that this new code permits a spectacular improvement in accuracy and computation time.  相似文献   

13.
Usually the straightforward generalization of explicit Runge-Kutta methods for ordinary differential equations to half-explicit methods for differential-algebraic systems of index 2 results in methods of orderq≤2. The construction of higher order methods is simplified substantially by a slight modification of the method combined with an improved strategy for the computation of the algebraic solution components. We give order conditions up to orderq=5 and study the convergence of these methods. Based on the fifth order method of Dormand and Prince the fifth order half-explicit Runge-Kutta method HEDOP5 is constructed that requires the solution of 6 systems of nonlinear equations per step of integration.  相似文献   

14.
We discuss an a posteriori error estimate for collocation methods applied to boundary value problems in ordinary differential equations with a singularity of the first kind. As an extension of previous results we show the asymptotical correctness of our error estimate for the most general class of singular problems where the coefficient matrix is allowed to have eigenvalues with positive real parts. This requires a new representation of the global error for the numerical solution obtained by piecewise polynomial collocation when applied to our problem class.  相似文献   

15.
The stability and accuracy of a standard finite element method (FEM) and a new streamline diffusion finite element method (SDFEM) are studied in this paper for a one dimensional singularly perturbed connvection-diffusion problem discretized on arbitrary grids. Both schemes are proven to produce stable and accurate approximations provided that the underlying grid is properly adapted to capture the singularity (often in the form of boundary layers) of the solution. Surprisingly the accuracy of the standard FEM is shown to depend crucially on the uniformity of the grid away from the singularity. In other words, the accuracy of the adapted approximation is very sensitive to the perturbation of grid points in the region where the solution is smooth but, in contrast, it is robust with respect to perturbation of properly adapted grid inside the boundary layer. Motivated by this discovery, a new SDFEM is developed based on a special choice of the stabilization bubble function. The new method is shown to have an optimal maximum norm stability and approximation property in the sense that where u N is the SDFEM approximation in linear finite element space V N of the exact solution u. Finally several optimal convergence results for the standard FEM and the new SDFEM are obtained and an open question about the optimal choice of the monitor function for the moving grid method is answered. This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship through Peking University.  相似文献   

16.
Recently, a continuous method has been proposed by Golub and Liao as an alternative way to solve the minimum and interior eigenvalue problems. According to their numerical results, their method seems promising. This article is an extension along this line. In this article, firstly, we convert an eigenvalue problem to an equivalent constrained optimization problem. Secondly, using the Karush-Kuhn-Tucker conditions of this equivalent optimization problem, we obtain a variant of the Rayleigh quotient gradient flow, which is formulated by a system of differential-algebraic equations. Thirdly, based on the Rayleigh quotient gradient flow, we give a practical numerical method for the minimum and interior eigenvalue problems. Finally, we also give some numerical experiments of our method, the Golub and Liao method, and EIGS (a Matlab implementation for computing eigenvalues using restarted Arnoldi’s method) for some typical eigenvalue problems. Our numerical experiments indicate that our method seems promising for most test problems.  相似文献   

17.
We consider a class of boundary value problems for linear multi-term fractional differential equations which involve Caputo-type fractional derivatives. Using an integral equation reformulation of the boundary value problem, some regularity properties of the exact solution are derived. Based on these properties, the numerical solution of boundary value problems by piecewise polynomial collocation methods is discussed. In particular, we study the attainable order of convergence of proposed algorithms and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by two numerical examples.  相似文献   

18.
In this paper, the author proves the global structure stability of the Lax's Riemann solution , containing only shocks and contact discontinuities, of general n×n quasilinear hyperbolic system of conservation laws. More precisely, the author proves the global existence and uniqueness of the piecewise C1 solution u=u(t,x) of a class of generalized Riemann problem, which can be regarded as a perturbation of the corresponding Riemann problem, for the quasilinear hyperbolic system of conservation laws; moreover, this solution has a global structure similar to that of the solution . Combining the results in Kong (Global structure instability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: rarefaction waves, to appear), the author proves that the Lax's Riemann solution of general n×n quasilinear hyperbolic system of conservation laws is globally structurally stable if and only if it contains only non-degenerate shocks and contact discontinuities, but no rarefaction waves and other weak discontinuities.  相似文献   

19.
Midpoint collocation for Cauchy singular integral equations   总被引:1,自引:0,他引:1  
Summary A Cauchy singular integral equation on a smooth closed curve may be solved numerically using continuous piecewise linear functions and collocation at the midpoints of the underlying grid. Even if the grid is non-uniform, suboptimal rates of convergence are proved using a discrete maximum principle for a modified form of the collocation equations. The same techniques prove negative norm estimates when midpoint collocation is used to determine piecewise constant approximations to the solution of first kind equations with the logarithmic potential.This work was supported by the Australian Research Council through the program grant Numerical analysis for integrals, integral equations and boundary value problems  相似文献   

20.
Summary. We consider singularly perturbed linear elliptic problems in two dimensions. The solutions of such problems typically exhibit layers and are difficult to solve numerically. The streamline diffusion finite element method (SDFEM) has been proved to produce accurate solutions away from any layers on uniform meshes, but fails to compute the boundary layers precisely. Our modified SDFEM is implemented with piecewise linear functions on a Shishkin mesh that resolves boundary layers, and we prove that it yields an accurate approximation of the solution both inside and outside these layers. The analysis is complicated by the severe nonuniformity of the mesh. We give local error estimates that hold true uniformly in the perturbation parameter , provided only that , where mesh points are used. Numerical experiments support these theoretical results. Received February 19, 1999 / Revised version received January 27, 2000 / Published online August 2, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号