首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single vehicle routing problem with pickups and deliveries (SVRPPD) is defined on a graph in which pickup and delivery demands are associated with the customer vertices. The problem consists of designing a least cost route for a vehicle of capacity Q. Each customer is allowed to be visited once for a combined pickup and delivery, or twice if these two operations are performed separately. This article proposes a mixed integer linear programming model for the SVRPPD. It introduces the concept of general solution which encompasses known solution shapes such as Hamiltonian, double-path and lasso. Classical construction and improvement heuristics, as well as a tabu search heuristic, are developed and tested over several instances. Computational results show that the best solutions generated by the heuristics are frequently non-Hamiltonian and may contain up to two customers visited twice.  相似文献   

2.
Path relinking for the vehicle routing problem   总被引:3,自引:0,他引:3  
This paper describes a tabu search heuristic with path relinking for the vehicle routing problem. Tabu search is a local search method that explores the solution space more thoroughly than other local search based methods by overcoming local optima. Path relinking is a method to integrate intensification and diversification in the search. It explores paths that connect previously found elite solutions. Computational results show that tabu search with path relinking is superior to pure tabu search on the vehicle routing problem.  相似文献   

3.
This paper considers the problem of designing districts for vehicle routing problems with stochastic demands. In particular, demands are assumed to be uncertain at the time when the districts are made, and these are revealed only after the districting decisions are determined. Tabu search and multistart heuristics for this stochastic districting problem are developed and compared. Computational results show that tabu search is superior over multistart.  相似文献   

4.
This paper describes a tabu search heuristic for a vehicle routing problem where the owner of a private fleet can either visit a customer with one of his vehicles or assign the customer to a common carrier. The owner’s objective is to minimize the variable and fixed costs for operating his fleet plus the total costs charged by the common carrier. The proposed tabu search is shown to outperform the best approach reported in the literature on 34 benchmark instances with a homogeneous fleet.  相似文献   

5.
The Discrete Split Delivery Vehicle Routing Problem with Time Windows (DSDVRPTW) consists of designing the optimal set of routes to serve, at least cost, a given set of customers while respecting constraints on vehicles’ capacity and customer time windows. Each customer can be visited by more than one vehicle since each customer’s demand, discretized in items, can be split in orders, i.e., feasible combinations of items. In this work, we model the DSDVRPTW assuming that all feasible orders are known in advance. Remarkably, service time at customer’s location depends on the delivered combination of items, which is a modeling feature rarely found in literature. We present a flow-based mixed integer program for the DSDVRPTW, we reformulate it via Dantzig-Wolfe and we apply column generation. The proposed branch-and-price algorithm largely outperforms a commercial solver, as shown by computational experiments on Solomon-based instances. A comparison in terms of complexity between constant service time vs delivery-dependent service time is presented and potential savings are discussed.  相似文献   

6.
The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that deals with two types of customers: the consumers (linehaul) that request goods from the depot and the suppliers (backhaul) that send goods to the depot. In this paper, we propose a simple yet effective iterated local search algorithm for the VRPB. Its main component is an oscillating local search heuristic that has two main features. First, it explores a broad neighborhood structure at each iteration. This is efficiently done using a data structure that stores information about the set of neighboring solutions. Second, the heuristic performs constant transitions between feasible and infeasible portions of the solution space. These transitions are regulated by a dynamic adjustment of the penalty applied to infeasible solutions. An extensive statistical analysis was carried out in order to identify the most important components of the algorithm and to properly tune the values of their parameters. The results of the computational experiments carried out show that this algorithm is very competitive in comparison to the best metaheuristic algorithms for the VRPB. Additionally, new best solutions have been found for two instances in one of the benchmark sets. These results show that the performance of existing metaheuristic algorithms can be considerably improved by carrying out a thorough statistical analysis of their components. In particular, it shows that by expanding the exploration area and improving the efficiency of the local search heuristic, it is possible to develop simpler and faster metaheuristic algorithms without compromising the quality of the solutions obtained.  相似文献   

7.
This paper deals with a routing problem variant which considers customers to simultaneously require delivery and pick-up services. The examined problem is referred to as the Vehicle Routing Problem with Simultaneous Pick-ups and Deliveries (VRPSPD). VRPSPD is an NP-hard combinatorial optimization problem, practical large-scale instances of which cannot be solved by exact solution methodologies within acceptable computational times. Our interest was therefore focused on metaheuristic solution approaches. In specific, we introduce an Adaptive Memory (AM) algorithmic framework which collects and combines promising solution features to generate high-quality solutions. The proposed strategy employs an innovative memory mechanism to systematically maximize the amount of routing information extracted from the AM, in order to drive the search towards diverse regions of the solution space. Our metaheuristic development was tested on numerous VRPSPD instances involving from 50 to 400 customers. It proved to be rather effective and efficient, as it produced high-quality solutions, requiring limited computational effort. Furthermore, it managed to produce several new best solutions.  相似文献   

8.
This paper addresses a vehicle scheduling problem encountered in home health care logistics. It concerns the delivery of drugs and medical devices from the home care company’s pharmacy to patients’ homes, delivery of special drugs from a hospital to patients, pickup of bio samples and unused drugs and medical devices from patients. The problem can be considered as a special vehicle routing problem with simultaneous delivery and pickup and time windows, with four types of demands: delivery from depot to patient, delivery from a hospital to patient, pickup from a patient to depot and pickup from a patient to a medical lab. Each patient is visited by one vehicle and each vehicle visits each node at most once. Patients are associated with time windows and vehicles with capacity. Two mixed-integer programming models are proposed. We then propose a Genetic Algorithm (GA) and a Tabu Search (TS) method. The GA is based on a permutation chromosome, a split procedure and local search. The TS is based on route assignment attributes of patients, an augmented cost function, route re-optimization, and attribute-based aspiration levels. These approaches are tested on test instances derived from existing VRPTW benchmarks.  相似文献   

9.
We propose a branch-and-cut algorithm for the VRPSPD where the constraints that ensure that the capacities are not exceeded in the middle of a route are applied in a lazy fashion. The algorithm was tested in 87 instances with 50–200 customers, finding improved lower bounds and several new optimal solutions.  相似文献   

10.
This article addresses an extension of the multi-depot vehicle routing problem in which vehicles may be replenished at intermediate depots along their route. It proposes a heuristic combining the adaptative memory principle, a tabu search method for the solution of subproblems, and integer programming. Tests are conducted on randomly generated instances.  相似文献   

11.
The fleet size and mix vehicle routing problem consists of defining the type, the number of vehicles of each type, as well as the order in which to serve the customers with each vehicle when a company has to distribute goods to a set of customers geographically spread, with the objective of minimizing the total costs. In this paper, a heuristic algorithm based on tabu search is proposed and tested on several benchmark instances. The computational results show that the proposed algorithm produces high quality results within a reasonable computing time. Some new best solutions are reported for a set of test problems used in the literature.  相似文献   

12.
The primary purpose of this paper is to validate a clustering procedure used to construct contiguous vehicle routing zones (VRZs) in metropolitan regions. Given a set of customers with random demand for pickups and deliveries over the day, the goal of the design problem is to cluster the customers into zones that can be serviced by a single vehicle. Monte Carlo simulation is used to determine the feasibility of the zones with respect to package count and tour time. For each replication, a separate probabilistic traveling salesman problem (TSP) is solved for each zone. For the case where deliveries must precede pickups, a heuristic approach to the TSP is developed and evaluated, also using Monte Carlo simulation. In the testing, performance is measured by overall travel costs and the probability of constraint violations. Gaps in tour length, tour time and tour cost are the measure used when comparing exact and heuristic TSP solutions.  相似文献   

13.
In the open vehicle routing problem (OVRP), the objective is to minimise the number of vehicles and then minimise the total distance (or time) travelled. Each route starts at the depot and ends at a customer, visiting a number of customers, each once, en route, without returning to the depot. The demand of each customer must be completely fulfilled by a single vehicle. The total demand serviced by each vehicle must not exceed vehicle capacity. Additionally, in one variant of the problem, the travel time of each vehicle should not exceed an upper limit.  相似文献   

14.
The vehicle routing problem with trailers and transshipments (VRPTT) is a recent and challenging extension of the well-known vehicle routing problem. The VRPTT constitutes an archetypal representative of the class of vehicle routing problems with multiple synchronization constraints (VRPMSs). In addition to the usual task covering constraints, VRPMSs require further synchronization between vehicles, concerning spatial, temporal, and load aspects. VRPMSs possess considerable practical relevance, but limited coverage in the scientific literature. The purpose of the present paper is to describe how several important types of VRPMSs, such as multi-echelon location-routing problems and simultaneous vehicle and crew routing problems, can be modelled as VRPTTs.  相似文献   

15.
Expressways in China make use of the toll-by-weight scheme, in which expressway tolls are collected based on the weight and traveling distance of the vehicle. Most vehicle routing models assume that the cost of traversing each edge is equivalent to edge length or some constant; as a result, such models cannot be practically applied to the Chinese expressway transportation system. This study addresses a new single vehicle routing problem that takes the vehicle’s (laden and unladen) weight into account. To solve this problem exactly, we provide a branch-and-bound algorithm with a provably valid lower bound measure, along with five dominance checkers for additional pruning. We analyze our algorithm using instances generated from standard TSP test cases, as well as two new sets of test cases based on real expressway information from the Gansu and Jiangxi provinces in China. The algorithm can be applied to any toll scheme in which the toll per unit distance monotonically increases with weight, even if the toll function is non-linear.  相似文献   

16.
On the complexity of the k-customer vehicle routing problem   总被引:1,自引:0,他引:1  
We investigate the complexity of the k-CUSTOMER VEHICLE ROUTING PROBLEM: Given an edge weighted graph, the problem requires to compute a minimum weight set of cyclic routes such that each contains a distinguished depot vertex and at most other k customer vertices, and every customer belongs to exactly one route.  相似文献   

17.
The purpose of this article is to propose a tabu search heuristic for the split delivery Vehicle Routing Problem with Production and Demand Calendars (VRPPDC). This new problem consists of determining which customers will be served by a common carrier, as well as the delivery routes for those served by the private fleet, in order to minimize the overall transportation and inventory costs. We first model this problem and then propose a simple decomposition procedure that can be used to provide a starting solution. Next, we introduce a new tabu search heuristic and we describe two new neighbor reduction strategies. Finally, we present the results of our extensive computational tests. According to these tests, our reduction strategies are efficient not only at reducing computing time but also at improving the overall solution quality.  相似文献   

18.
In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with three-dimensional loading constraints (3L-PDP). We are given a set of requests and a homogeneous fleet of vehicles. A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as set of rectangular boxes and the vehicle capacity is replaced by a 3D loading space.This paper is the second one in a series of articles on 3L-PDP. As in the first paper we are dealing with constraints which guarantee that no reloading effort will occur. Here the focus is laid on the reloading ban, a packing constraint that ensures identical placements of same boxes in different packing plans. The reloading ban allows for better solutions in terms of travel distance than a routing constraint that was used in the first paper to preclude any reloading effort. To implement this packing constraint a new type of packing procedure is needed that is capable to generate a series of interrelated packing plans per route. This packing procedure, designed as tree search algorithm, and the corresponding concept of packing checks is the main contribution of the paper at hand. The packing procedure and a large neighborhood search procedure for routing form a hybrid algorithm for the 3L-PDP. Computational experiments were performed using 54 3L-PDP benchmark instances.  相似文献   

19.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

20.
We suggest an efficient route minimization heuristic for the vehicle routing problem with time windows. The heuristic is based on the ejection pool, powerful insertion and guided local search strategies. Experimental results on the Gehring and Homberger’s benchmarks demonstrate that our algorithm outperforms previous approaches and found 18 new best-known solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号