首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three novel chiral selectors 4a-c were synthesized from(S)-amino acids and(R)-1-phenyl-2-(4-methylphenyl)ethylamine.4a-cwere connected to 3-aminopropylsilanized silica gel to be used as the chiral stationary phase for HPLC.Five amino acid derivativesand two pyrethroid insecticides were fairly resolved on these three new chiral stationary phases under normal phase condition.  相似文献   

2.
Asymmetric cyclization of symmetrical 3,4-disubstituted and 3,3, 4-trisubstituted 4-pentenals was studied using Rh-complexes with chiral ligands. The cyclization of symmetrical 4-pentenals 4a,b by a neutral Rh[(R)-BINAP]Cl afforded cis-3,4-disubstituted (4R)-cyclopentanones 9a,b of >95% ee in 25-31% yields; on the other hand, the cyclization of 4a-c by a cationic Rh[(R)-BINAP]ClO(4) afforded trans-3,4-disubstituted (4S)-cyclopentanones 10a-c of >95% ee in 70-81% yields. All stereoisomers could be stereoselectively made by the selection of a neutral or cationic Rh-complex, and (R)- or (S)-BINAP ligand. The Rh-catalyzed cyclization could be applied to the construction of cyclopentanones 17 and 18 bearing a chiral quaternary carbon. The cyclization by the cationic Rh[(R)-BINAP]ClO(4) afforded the optically active trans-3,3, 4-trisubstituted cyclopentanones 18a-c of 92-95% ee in 75-83% yields. The catalytic cycle was also studied by using deuterium aldehyde, and the tentative mechanisms of the enantio- and diastereoselection were proposed.  相似文献   

3.
The trimethylsilyl-protected enynes 9a-c and 14a,b with alkynyl substituents on the three-membered ring or on the double bond of a methylenecyclopropane or a bicyclopropylidene moiety were prepared in two steps from the alcohols 6a-c and 12a,b, respectively, by conversion to the iodides and their coupling with lithium (trimethylsilyl)acetylide (8) in 38-73% overall yields. The bicyclopropylidene derivative 9d was synthesized in 49% yield directly from bicyclopropylidene (3) by lithiation followed by coupling with (5-iodopent-1-ynyl)trimethylsilane (11). Enynes 9b-d were protiodesilylated by treatment with K2CO3 in methanol to give the corresponding unprotected enynes 10b-d in 53, 74 and 94% yield, respectively. Enynes 17a-c with a carbonyl group adjacent to the acetylenic moiety were synthesized from oxo derivatives 15a-c by Wittig olefination followed by coupling with 8 in 47, 18 and 12% overall yield, respectively. Pauson-Khand reactions of the methylenecyclopropane derivatives with a substituent on the ring (9a,b and 10a) as well as on the double bond (14a,b and their in situ prepared protiodesilylated analogues) proceeded smoothly by stirring of the corresponding enyne with [Co2(CO)8] in dichloromethane at ambient temperature followed by treatment of the formed complexes with trimethylamine N-oxide under an oxygen atmosphere at -78 degrees C to give tricyclic or spirocyclopropanated bicyclic enones 18a,b, 19a, 20a,b, 21a,b in good yields. Alkynylbicyclopropylidene derivatives 9c,d and 10c,d formed the corresponding cobalt complexes at -78 to -20 degrees C. Treatment of the latter with N-methylmorpholine N-oxide under an argon atmosphere at -20 degrees C gave the spirocyclopropanated tricyclic enones 18c, 19c and 18d in 31-45% yields. The structure of 19c was proved by X-ray crystal structure analysis. The cyclization of enynones 17a-c in MeCN at 80 degrees C gave the spirocyclopropanated bicyclic diketones 22a-c in 38-65% yields. Intramolecular PKRs of the enynes 25a,d with a chiral auxiliary adjacent to the triple bond gave the corresponding products 26a,d in 70 and 79% yield, respectively, as 5:1 and 8:1 mixtures of diastereomers, respectively. Addition of lithium dimethylcuprate or higher order cuprates to the double bond of the former furnished bridgehead-substituted bicyclo[3.3.0]octanones 27a-c in 57-86% yields. Protiodesilylation of 27a followed by acetal cleavage gave the enantiomerically pure spirocyclopropanated bicyclo[3.3.0]octanedione (1R,5R)- 29a with [alpha]D(20)=-148 (c=1.0 in CHCl3) in 55% overall yield.  相似文献   

4.
The reactions of (2S)-2-amino-2-substituted-N-(4-nitrophenyl)acetamides 16a-c, succindialdehyde (13), and benzotriazole afforded enantiopure (3S,5R,7aR)-5-(1H-1,2,3-benzotriazol-1-yl)-3-substituted-1-(4-nitrophenyl)tetrahydro-1H-pyrrolo[1,2-a]imidazol-2-ones 17a-c, which were converted by sodium borohydride into (3S,7aR)-3-substituted-1-(4-nitrophenyl)tetrahydro-1H-pyrrolo[1,2-a]imidazol-2-ones 18a-c. Chiral (2S)-2-amino-2-substituted-N-(4-methylphenyl)acetamides 12a-d, easily prepared in two steps from N-Boc-alpha-amino acids 10a-d, similarly reacted with glutaraldehyde (20) and benzotriazole to generate 5-benzotriazolyl-3-substituted-hexahydroimidazo[1,2-a]pyridin-2(3H)-ones 21a-d, which were converted by sodium borohydride directly into optically active 3-substituted-hexahydroimidazo[1,2-a]pyridin-2(3H)-ones 22a-d.  相似文献   

5.
Selective addition of the chiral, sulfonimidoyl substituted bis(allyl)titanium complexes 5a-d, which are configurationally labile in regard to the Calpha-atoms, to N-toluenesulfonyl (Ts)-, N-2-trimethylsilylethanesulfonyl (SES)-, and N-tert-butylsulfonyl (Bus) alpha-imino ester (9a-c) in the presence of Ti(OiPr)(4) and ClTi(OiPr)(3) afforded with high regio- and diastereoselectivities in good yields the (syn, E)-configured beta-alkyl-gamma,delta-unsaturated alpha-amino acid derivatives 2a-g, which carry a chiral, electron-withdrawing nucleofuge at the delta-position and a cyclohexyl, an isopropyl, a phenyl, and a methyl group at the beta-position. Addition of the cyclic bis(allyl)titanium complex 14 to N-Bus alpha-imino ester 9c afforded with similar high regio- and diastereoselectivities the (E)- and (Z)-configured amino acid derivatives (E)-8 and (Z)-8. Reaction of complexes 5a-d with alpha-imino esters 9a-c in the presence of Ti(OiPr)(4) occurs stepwise to give first the mono(allyl)titanium complexes containing 2a-g as ligands, which react in the presence of ClTi(OiPr)(3) with a second molecule of 9a-c with formation of two molecules of 2a-g. Formation of (S,R,E)-configured homoallylic amines 2a-g entails Si,Re,E processes of alpha-imino esters 9a-c with the (R,R)-configured bis(allyl)titanium complexes (R,R)-5a-d and (R)-configured mono(allyl)titanium complexes (R)-17a-d, both of which are most likely in rapid equilibrium with their (S,S)-diastereomers and (S)-diastereomers, respectively. Interestingly, in the reaction of 5a-d with aldehydes, the (S,S)-configured complexes (S,S)-5a-d are the ones which react faster. Reaction of the N-titanated amino acid derivatives Ti-2a and Ti-2b with N-Ts alpha-imino ester 9a led to the highly diastereoselective formation of imidazolidinones 15a and 15b, respectively. Cleavage of the sulfonamide group of the N-Bus amino acid derivative 2d with CF(3)SO(3)H gave quantitatively the sulfonimidoyl functionalized amino acid H-2d. A Ni-catalyzed cross-coupling reaction of the amino acid derivative 2e with ZnPh(2) led to a substitution of the sulfonimidoyl group by a phenyl group and furnished the enantiomerically pure protected alpha-amino acid Bus-1. Two new N-sulfonyl alpha-imino esters, the SES and the Bus alpha-imino esters 9b and 9c, respectively, have been synthesized from the corresponding sulfonamides by the Kresze method in medium to good yields. The N-SES alpha-imino ester 9b and the N-Bus alpha-imino ester 9c should find many synthetic applications, in particular, in cases where the N-Ts alpha-imino ester 9a had been used before.  相似文献   

6.
The first enantioselective peroxidation of prochiral allylic and benzylic C-H compounds by the use of chiral bisoxazoline-copper(I) complexes, generated in situ from the ligands 3 and 4a-d, and t-BuOOH as oxidant is reported. Cyclohexene 1, cyclopentene 5, -angelica lactone 7, allylbenzene 9 and 2-phenylbutane 11 were converted into the optically active allylic and benzylic tert-butyl peroxides 2, 6, 8, 10a and 12 in good yields and ee values of 4-20%. Oxidations of 1-substituted 1-cyclohexenes 13a-c led to mixtures of regioisomeric peroxides 16a-c, 17a-c and 18a-c with different regio- and enantioselectivities, depending on the 1-substituent and the ligand used. The highest ee values (up to 84%) were observed for (S)-3-tert-butylperoxy-1-methyl-1-cyclohexene 17a.  相似文献   

7.
李早英  梁江林  李聪 《中国化学》2000,18(4):565-570
Reaction of chiral 2,2'-biamino-1,1'-binaphthalene (R or 5) with monosubstituted porphyrin 1b and 2b-c afforded novel chiral diporphyrins 3a-c and 4a-c. Their dimetal complexes [(M)2DiPor] have also been prepared. Both structures have been identified by MS, IR, UV-visible, 1H NMR spectra and elemental analysis. These novel chiral compounds show very high optical activities.  相似文献   

8.
Absolute stereochemistry of amphidinolide E   总被引:1,自引:0,他引:1  
The absolute configurations at eight chiral centers in amphidinolide E (1), a cytotoxic 19-membered macrolide isolated from a marine dinoflagellate Amphidinium sp., were determined to be 2R, 7R, 8R, 13S, 16S, 17R, 18R, and 19R on the basis of detailed analysis of NMR data and by chemical means.  相似文献   

9.
手性催化剂催化下的不对称合成反应是近年来不对称合成研究中受到重视的领域,如在手性催化剂如,在手性冠醚,手性镧配合物、手性硒、手性铑及手性脯氨酸铷盐等催化下,醛、酮与二烃基锌形成手性醇和不对称羟醛缩合反应等,催化下通过Michael加成反应合成手性化合物的方法近年来也有报道,  相似文献   

10.
Enantiomerically pure, vicinal diols 1 afforded in a two-step synthesis (etherification and subsequent Claisen condensation) chiral bis-1,3-diketones H(2)L((S,S)) (3 a-c) with different substitution patterns. Reaction of these C(2)-symmetric ligands with various transition-metal acetates in the presence of alkali ions generated distinct polynuclear aggregates 4-8 by diastereoselective self-assembly. Starting from copper(II) acetate monohydrate and depending on the ratio of transition-metal ion to alkali ion to ligand, chiral tetranuclear copper(II) cubanes (C,C,C,C)-[Cu(4)(L((S,S)))(2)(OMe)(4)] (4 a-c) or dinuclear copper(II) helicates (P)-[Cu(2)(L((S,S)))(2)] (5) could be synthesized with square-pyramidal and square-planar coordination geometry at the metal center. In analogy to the last case, with palladium(II) acetate double-stranded helical systems (P)-[Pd(2)(L((S,S)))(2)] (6,7) were accessible exhibiting a linear self-organization of ligand-isolated palladium filaments in the solid state with short inter- and intramolecular metal distances. Finally, the introduction of hexacoordinate nickel(II) in combination with lithium hydroxide monohydrate and chiral ligand H(2)L((S,S)) (3 a) allowed the isolation of enantiomerically pure dinuclear nickel(II) coronate [(LiMeOH)(2) subset{(Delta,Lambda)-Ni(2)(L((S,S)))(2)(OMe)(2)}] (8) with two lithium ions in the voids, defined by the oxygen donors in the ligand backbone. The high diastereoselectivity, induced by the chiral ligands, during the self-assembly process in the systems 4-8 could be exemplarily proven by circular dichroism spectroscopy for the synthesized enantiomers of the chiral copper(II) cubane 4 a and palladium(II) helicate 6.  相似文献   

11.
The synthesis of a new class of chiral C(2)-symmetric tridentate N-donor ligands, a series of 2,5-bis(2-oxazolinylmethyl)pyrroles, was achieved in four steps starting from the known 2,5-bis(trimethylammoniomethyl)pyrrole diiodide (1). Reaction of 1 with NaCN in dimethyl sulfoxide gave 2,5-bis(cyanomethyl)pyrrole (2) cleanly, which was then cyclized with amino alcohols to give the 2,5-bis(2-oxazolinylmethyl)pyrroles 3 a-c (3 a: bis[2-(4,4'-dimethyl-5-hydrooxazolyl)methyl]pyrrole; 3 b: (S,S)-bis[2-(4-isopropyl-4,5-dihydrooxazolyl)methyl]pyrrole; 3 c: (S,S)-bis[2-(4-tertiobutyl-4,5-dihydrooxazolyl)methyl]pyrrole). Metallation of 3 a-c with one molar equivalent of tBuLi and their subsequent reaction with a stoichiometric amount of [PdCl(2)(cod)] (cod=cyclooctadiene) gave the palladium(II) complexes 4 a-c. Whereas the arrangement of the N-donor atoms in the crystallographically characterized complex 4 a is almost ideally square planar, all three heterocycles in the ligand are twisted out of the coordination plane, leading to a chiral conformation of the complex. Attempts to freeze out these two conformers in solution at 200 K (NMR) failed, and this suggests that the activation barrier for conformational racemization is significantly below 10 kcal mol(-1). The palladium-induced shift of two double bonds as well as the porphyrinogen/porphyrin-type oxidation of the complexes 4 a-c led to the planarization of the 2,5-bis(oxazolinylmethyl)pyrrolide ligands in the palladium(II) complexes 5 a-c, 6 b, and 6 c, and to the formation of rigid chiral C(2)-symmetric systems as shown by X-ray diffraction studies. The formation of the conjugated system of double bonds in this transformation is accompanied by the emergence of an intra-ligand chromophore. This is evident in the absorption spectrum of 6 c which displays an intense band with a maximum at 485 nm attributable to an intra-ligand pi*<--pi transition and a characteristic vibrational progression of nu approximately 1350 cm(-1). Complexes 4 b and 4 c were tested in the catalytic asymmetric Michael addition of ethyl 2-cyanopropionate to methyl vinylketone (catalyst loading: 1 mol %) and were found to give maximum ee values of 43 % (4 b) and 21 % (4 c) at low conversions.  相似文献   

12.
Oxidation of trans-3,5-di-tert-butyl-3,5-diphenyl-1,2,4-trithiolane with dimethyldioxirane (DMD) or m-chloroperbenzoic acid (MCPBA) gave two stereoisomeric (1S*,3S*,5S*)- and (1R*,3S*,5S*)-1-oxides (16 and 17, respectively). Oxidation of 16 with DMD gave the (1S*,2R*,3S*,5S*)-1,2-dioxide (18) and the 1,1-dioxide 19, and that of 17 yielded the (1R*,2R*,3S*,5S*)-1,2-dioxide (20) mainly along with 18 and 19. The structures of the 1,2-dioxides 18 and 20 were determined by X-ray crystallography. 1,2-Dioxides 18 and 20 isomerized to each other in solution, and the equilibrium constant K (20/18) is 19 in CDCl(3) at 295 K. The kinetic study suggested a biradical mechanism for the isomerization. Isomerization of 16 and 17 to cis-3,5-di-tert-butyl-1,2,4-trithiolane 1-oxides by treatment with Me(3)O(+)BF(4)(-) is also described.  相似文献   

13.
The hemilabile chiral C2 symmetrical bidentate substituted amide ligands (1R,2R)-5(a-d) and (1S,2S)-6(a-d) were synthesized in quantitative yield from (1R,2R)-(+)-3-methylenecyclo-propane-1,2-dicarboxylic acid (1R,2R)-3 and (1S,2S)-(-)-3-methylene-cyclopropane-1,2-dicarboxylic acid (1S,2S)-3, in two steps, respectively. The chiral Feist's acids (1R,2R)-3 and (1S,2S)-3 were obtained in good isomeric purity by resolution of trans-(±)-3-methylene-cyclopropane-1,2-dicarboxylic acid from an 8:2 mixture of tert-butanol and water, using (R)-(+)-α-methylbenzyl amine as a chiral reagent. This process is reproducible on a large scale. All these new synthesized chiral ligands were characterized by 1H-NMR, 13C-NMR, IR, and mass spectrometry, as well as elemental analysis and their specific rotations were measured. These new classes of C2 symmetric chiral bisamide ligands could be of special interest in asymmetric transformations.  相似文献   

14.
4-Oxo-4-phenylbutanehydrazide (1) reacted with many active methylene reagents such as acetylacetone, diethylmalonate, ethylacetoacetate, ethylcyanoacetate, benzoyl-acetonitrile, and malononitrile under neat conditions to afford the corresponding pyrazoles (2–7) , also, treatment of butanehydrazide (1) with electrophilic reagents as triethylorthoformate, dimethylformamide-dimethylacetal, acetic anhydride, and carbon disulfide to give 1,3,4-oxadiazoles (8,10,11) and N′-acetyl-butanehydrazide (9) . Reacted of butanehydrazide (1) with potassium thiocyanate gave 1,2,4-triazoles (12) . Similarly, treatment of (1) with chloroacetamide gave 1,2,4-triazinones (13) . The pyrrolotriazinones (14) was obtained by cyclization of (13) . Also, butanehydrazide ( 1 ) was utilized as a starting material for the synthesized of new Schiff bases as N′-(4-sub-benzylidene)-phenylbutane-hydrazide (15a-c) , which are used as an initiative to prepare new compounds such as 1,2,4-triazepinones (16a-c) , pyrrolotriazepinones (17a-c) , 1,2,4-triazines (18a-c) , and pyrrolotriazines (19a-c) by reacted of (15a-c) with each chloroacetamide or formamide. The chemical structure of the newly prepared compounds was determined through the spectrum data, including IR, NMR, and MS. The prepared compounds were tested for their in vitro antitumor activities. The compounds 17a-c , 16a-c , and 19a-c displayed activity against several types of cancer cell lines.  相似文献   

15.
以甲酰基二茂铁(1)和手性1,2-二苯基乙二胺[(1R, 2R)-1,2-二苯基乙二胺(2R), (1S,2S)-1,2-二苯基乙二胺(2S)]为原料, 经缩合、还原和N-烷基化反应, 制备了一对新型手性四齿双二茂铁基配体[N,N’-二(二茂铁基甲基)-N,N’-二(2-羟基丙基)-(1R,2R)-1,2-二苯基乙二胺(5R)和N,N’-二(二茂铁基甲基)-N,N’-二(2-羟基丙基)-(1S,2S)-1,2-二苯基乙二胺(5S)]. 用元素分析、红外(IR)、质子核磁共振(1H NMR)、紫外-可见(UV-Vis)、固体圆二色(CD)光谱等对手性产物(3R-5S)进行了表征. 固体CD光谱研究表明, 配体5R(或5S)的手性特征和4R(或4S)相似而与3R(或3S)却有一定差别.  相似文献   

16.
The conjugate addition of benzylic phenylsulfonyl carbanions (2a'-d') to enoates derived from d-(+)-mannitol (E- or Z-1a-c) was studied using THF and THF/HMPA as solvent. Under kinetic conditions (-78 degrees C), enoate E-1a,b led to a mixture of syn-(R,S) and anti-(S,S) adducts (55/45), and syn-(R,S) adducts were the main product obtained ( approximately 90/10) from enoate Z-1a. Under thermodynamic conditions (-78 degrees C to room temperature) syn-(R,S) adducts were also preferentially formed ( approximately 90/10), despite the geometry at the double bond in the acceptor. Enoate 1c (E/Z = 57/43), bearing an additional benzyl group at the alpha-position, also reacted with carbanions 2'a,b, under thermodynamic conditions, leading to syn-adducts in excellent de (control at the three newly generated stereogenic centers). The adducts were quantitatively transformed into the corresponding beta-gamma-disubstituted gamma-butyrolactones and alpha,beta,gamma-trisubstituted gamma-butyrolactones. (1)H NMR studies (NOE and J-coupling) of these lactones allowed us to determine their configuration at the newly generated chiral centers. The reduction of the C-S bond in adducts syn-(R,S) with Na/Hg, followed by treatment of the resulting products in aqueous acid media, led to enantioenriched beta-benzyl-gamma-hydroxymethyl-gamma-butyrolactones. The conformational equilibrium of enoates E- and Z-1b was evaluated by theoretical calculations (ab initio, MP2/6-31G), and a mechanistic rationale was proposed to explain the observed stereoselectivities.  相似文献   

17.
An electron-capture gas chromatographic procedure was developed for the simultaneous analysis of the enantiomers of fluoxetine and norfluoxetine. The assay involves basic extraction of these enantiomers from the biological samples, followed by their conversion to diastereoisomers using the chiral derivatizing reagent (S)-(-)-N-trifluoroacetylprolyl chloride. The method was utilized to detect and measure the quantity of these enantiomers in plasma and urine of patients and in liver and brain tissue of rats treated with (R,S)-fluoxetine.  相似文献   

18.
A series of zinc(ii) alkyl complexes stabilised by the C(2)-chiral bis(oxazoline) ligand ((R(1),R(2))BOX, with R(1) = (4S)-tBu, R(2) = H (a); R(1) = (4S)-Ph, R(2) = H (b); R(1) = (4R)-Ph, R(2) = (5S)-Ph (c)), has been synthesised and structurally characterised. ((R(1),R(2))BOX)H ligands react with ZnEt(2) in toluene to give the heteroleptic three-coordinate compounds of ((R(1),R(2))BOX)ZnEt, 1a, 1b and 1c in high yield. However, when the addition of (BOX)H ligands (a-b) over ZnEt(2) is "uncontrolled", the formation of homoleptic four-coordinate compounds are favoured (2a-b), but not for the more sterically crowded ligand (c). The zinc-ethyl derivatives (1a-c) react readily with protic reagents such as acetic acid (HOAc) and methanol (MeOH). For compounds 1a-c a redistribution of ligands is observed leading preferentially to homoleptic compounds, except for the bulkier ligand c providing a three-coordinate complex identified as ((Ph,Ph)BOX)Zn(OMe), 4c. The reaction of acetylacetone (acacH) with compounds 1a-c leads straightforwardly to the more stable four-coordinate compounds corresponding to ((R(1),R(2))BOX)Zn(η(2)-acac), 5a-c. The potential of these compounds as initiators for the copolymerisation of epoxides with CO(2) was investigated.  相似文献   

19.
This paper is concerned with the synthesis of 1,8,9,16-tetrahydroxytetraphenylene (3a) via copper(II)-mediated oxidative coupling, its resolution to optical antipodes, and its conversion to 1,8,9,16-tetrakis(diphenylphosphino)tetraphenylene (3b). On the basis of these chiral "linear" building blocks, three rodlike chiral complexes, triblock (R,R,R,R)-17 and (S,S,S,S)-20 and pentablock (R,R,R,R,R,R,R,R)-22, were constructed. As a hydrogen bond donor, racemic and optically active 3a was allowed to assemble with linear acceptors to afford highly ordered structures. A 1:1 adduct of 4,4'-bipyridyl and (+/-)-3a exists in a dimeric form of 3a linked by 4,4'-bipyridyl through hydrogen bonds. Pyrazine serves as a short linker between achiral parallel chains each formed by (+/-)-3a, while self-assembly of homochiral 3a into alternate parallel chains occurs in the adduct of 5,5'-dipyrimidine with (+/-)-3a. Self-assembly of (S,S)-3a or (R,R)-3a with 4,4'-dipyridyl yielded a packing of chiral double helical chains formed by chiral tetrol 3a molecules. A novel chiral ligand, (S,S)-23, derived from 3a was used in the asymmetric catalytic hydrogenation of alpha-acetamidocinnamate, yielding up to 99.0% ee and 100% conversion.  相似文献   

20.
New benzo[h]quinoline ligands (HCN'N) containing a CHRNH2 (R=H (a), Me (b), tBu (c)) function in the 2-position were prepared starting from benzo[h]quinoline N-oxide (in the case of ligand a) and 2-chlorobenzo[h]quinoline (for ligands b and c). These compounds were used to prepare ruthenium and osmium complexes, which are excellent catalysts for the transfer hydrogenation (TH) of ketones. The reaction of a with [RuCl2(PPh3)3] in 2-propanol at reflux afforded the terdentate CN'N complex [RuCl(CN'N)(PPh3)2] (1), whereas the complexes [RuCl(CN'N)(dppb)] (2-4; dppb=Ph2P(CH2)4PPh2) were obtained from [RuCl2(PPh3)(dppb)] with a-c, respectively. Employment of (R,S)-Josiphos, (S,R)-Josiphos*, (S,S)-Skewphos, and (S)-MeO-Biphep in combination with [RuCl2(PPh3)3] and ligand a gave the chiral derivatives [RuCl(CN'N)(PP)] (5-8). The osmium complex [OsCl(CN'N)(dppb)] (12) was prepared by treatment of [OsCl2(PPh3)3] with dppb and ligand a. Reaction of the chloride 2 and 12 with NaOiPr in 2-propanol/toluene afforded the hydride complexes [MH(CN'N)(dppb)] (M=Ru 10, Os 14), through elimination of acetone from [M(OiPr)(CN'N)(dppb)] (M=Ru 9, Os 13). The species 9 and 13 easily reacted with 4,4'-difluorobenzophenone, via 10 and 14, respectively, affording the corresponding isolable alkoxides [M(OR)(CN'N)(dppb)] (M=Ru 11, Os 15). The complexes [MX(CN'N)(P2)] (1-15) (M=Ru, Os; X=Cl, H, OR; P=PPh3 and P2=diphosphane) are efficient catalysts for the TH of carbonyl compounds with 2-propanol in the presence of NaOiPr (2 mol %). Turnover frequency (TOF) values up to 1.8x10(6) h(-1) have been achieved using 0.02-0.001 mol % of catalyst. Much the same activity has been observed for the Ru--Cl, --H, --OR, and the Os--Cl derivatives, whereas the Os--H and Os--OR derivatives display significantly lower activity on account of their high oxygen sensitivity. The chiral Ru complexes 5-8 catalyze the asymmetric TH of methyl-aryl ketones with TOF approximately 10(5) h(-1) at 60 degrees C, up to 97 % enatiomeric excess (ee) and remarkably high productivity (0.005 mol % catalyst loading). High catalytic activity (TOF up to 2.2x10(5) h(-1)) and enantioselectivity (up to 98 % ee) have also been achieved with the in-situ-generated catalysts prepared from [MCl2(PPh3)3], (S,R)-Josiphos or (S,R)-Josiphos*, and the benzo[h]quinoline ligands a-c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号