首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H2SO4 modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin–Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (RL) indicated that chitosan–H2SO4 was favorable for Pb(II) and Cu(II) adsorption.  相似文献   

2.
Biosorption of nickel ions from aqueous solutions by modified loquat bark waste (MLB) has been investigated in a batch biosorption process. The biosorbent MLB was characterized by FTIR analysis. The extent of biosorption of Ni(II) ions was found to be dependent on solution pH, initial nickel ions concentration, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by three widely used two-parameters Langmuir, Temkin and Freundlich isotherm models. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich isotherm model by high correlation coefficients R2. The maximum adsorption capacity was 27.548 mg/g of Ni(II) ions onto MLB. The thermodynamic analysis indicated that the biosorption behavior of nickel ions onto MLB biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative values of ΔG° (−5.84 kJ/mol) and positive values of ΔH° (13.33 kJ/mol) revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described well the biosorption experimental data. The modified loquat bark (MLB) was successfully used for the biosorption of nickel ions from synthetic and industrial electroplating effluents.  相似文献   

3.
Equilibrium, kinetics and thermodynamic aspects of sorption of Promethazine hydrochloride (PHCl) onto iron rich smectite (IRS) from aqueous solution were investigated. The effect of pH on sorption of PHCl onto IRS was also found out. Experimental data were evaluated by using Langmuir, Freundlich and Dubinin–Raduschkevich (DR) isotherm equations. Freundlich and DR equations provided better compatibility than Langmuir equation. Besides, it was determined that the maximum sorption of PHCl takes place at about pH 5. From kinetic studies, it was obtained that sorption kinetics follow pseudo-second-order kinetic model for PHCl sorption onto IRS. When thermodynamic studies are concerned, the values of activation energy (Ea), ΔG°, ΔH° and ΔS° were obtained. ΔG° values are in the range of −8.84 and −9.45 kJ mol−1 indicating spontaneous nature of physisorption. The negative value of the ΔH° (−3.20 kJ mol−1) indicates exothermic nature of adsorption. FTIR analysis and SEM observations of IRS and PHCl adsorbed IRS were also carried out. Sorption experiments indicate that IRS may be used effectively for the adsorption of PHCl.  相似文献   

4.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

5.
A novel glutaraldehyde cross-linked epoxyaminated chitosan (GA-C-ENCS) prepared through chemical modification was used as an adsorbent for the removal and recovery of Cu(II) from aqueous media. The adsorbent was characterized by FTIR, SEM-EDS, ESR, TG/DTG, BET-surface area and potentiometric titration. The Cu(II) adsorption process, which was pH dependent showed maximum removal at pH 6.0. Adsorption equilibrium was achieved within 3 h. The adsorption of Cu(II) followed a reversible-first-order kinetics. The equilibrium data were evaluated using the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The best interpretation for the equilibrium data was given by the Dubinin–Radushkevich isotherm. The adsorption capacity of the adsorbent increased from 3.11 to 3.71 mmol g−1 when the temperature was increased from 20 to 50 °C. The complete removal of 20.7 mg L−1 Cu(II) from electroplating industry wastewater was achieved by 0.4 g L−1 GA-C-ENCS. Regeneration experiments were tried for four cycles and the results indicate a capacity loss of <7.0%.  相似文献   

6.
A laboratory batch study has been performed to study the effect of various physic-chemical factors such as initial metal ion concentration, solution pH, and amount of adsorbent, contact time and temperature on the adsorption characteristics of zinc (Zn2+) metal ions onto kaolin. It has been found that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, solution pH but decreases with the amount of adsorbent and temperature of the system. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on kaolin is a two steps process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreasing intra-particle diffusion in the interior of the adsorbent which has also been confirmed by intra-particle diffusion model. The equilibrium time is found to be in the order of 60 min. Overall the kinetic studies showed that the zinc adsorption process followed pseudo-second-order kinetics among pseudo-first-order and intra-particle diffusion model. The different kinetic parameters including rate constant are determined at different initial metal ion concentration, solution pH, amount of adsorbent and temperature respectively. The equilibrium adsorption results are analyzed by both Langmuir and Freundlich models to determine the mechanistic parameters associated with the adsorption process. The value of separation factor, RL from Langmuir equation also gives an indication of favorable adsorption. Finally thermodynamic parameters are determined at three different temperatures and it has been found that the adsorption process is exothermic due to negative ΔH° accompanied by decrease in entropy change and Gibbs free energy change (ΔG°).  相似文献   

7.
Highly selective material based on naturally occurring biomaterial namely chitosan has been designed for the defluoridation of water. Lanthanum incorporated chitosan beads (LCB) were prepared using precipitation method. The synthesis was optimized by varying different synthesis parameters namely lanthanum loading, complexation and precipitation time, strength of ammonia solution used for precipitation, drying time, etc. Lanthanum incorporated chitosan beads were characterized using SEM, FTIR, XRD and EDX. Surface area of LCB was observed to be 2.76 m2 g−1. The equilibrium adsorption data fitted well to Langmuir adsorption isotherm and showing maximum fluoride adsorption capacity of 4.7 mg g−1 with negligible lanthanum release. Kinetic study reveals that adsorption of fluoride is fast and follows pseudo-first-order kinetics. The effect of pH was also studied and the best efficiency was observed at pH 5. Presence of sulphate, nitrate and chloride marginally affected the removal efficiency, however drastic reduction in fluoride uptake was observed in the presence of carbonate and bicarbonate. Negative value of change in free energy (ΔG°) and positive value of change in entropy (ΔS°) suggest the adsorption of fluoride by LCB is feasible and spontaneous process. Positive value of change in enthalpy (ΔH°) suggests the process of fluoride adsorption is endothermic in nature. Regeneration study reveals that 1 M ammonium chloride solution appears to be the promising regeneration media showing 81.22% regeneration. The adsorption capacity of LCB was similar in fluoride-contaminated ground water collected from Dhar district of Madhya Pradesh, India, as compared to simulated water.  相似文献   

8.
In order to better understand the adsorption mechanism of chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid (α-KA-CCMNPs), the removal of Cu2+ by α-KA-CCMNPs from aqueous solution was investigated in a batch system at 18, 35 and 50 °C. Different experimental approaches were applied to show mechanistic aspects, such as adsorption isotherms, kinetics and thermodynamics studies. Adsorption equilibrium studies showed that Cu2+ adsorption followed Langmuir model. The kinetics of the interactions was best described by pseudo-second-order mechanism. The thermodynamic parameters (ΔG°, ΔH° and ΔS°) analysis predicted that the adsorption process was strongly dependent on temperature of medium, and spontaneous and endothermic process. The XPS combined with FT-IR spectra revealed that N atom of –NH– group and O atom of carboxyl group in α-KA-CCMNPs coordinated with Cu2+. Experimental results from this study provide data that would be required if this heavy metal adsorption system was to be “scaled up” for industrial application.  相似文献   

9.
In the present study, Pb(II) removal efficiency of Strychnos potatorum seed powder (SPSP) from aqueous solution has been investigated. Batch mode adsorption experiments have been conducted by varying pH, contact time, adsorbent dose and Pb(II) concentration. Pb(II) removal was pH dependent and found to be maximum at pH 5.0. The maximum removal of Pb(II) was achieved within 360 min. The Lagergren first-order model was less applicable than pseudo-second-order reaction model. The equilibrium adsorption data was fitted to Langmuir and Freundlich adsorption isotherm models to evaluate the model parameters. Both models represented the experimental data satisfactorily. The monolayer adsorption capacities of SPSP as obtained from Langmuir isotherm was found to be 16.420 mg/g. The FTIR study revealed the presence of various functional groups which are responsible for the adsorption process.  相似文献   

10.
The present work proposes the use of Agave sisalana (sisal fiber) as an natural adsorbent for ions Pb(II) and Cd(II) biosorption from natural waters. The flame atomic absorption spectrometry was used for quantitative determination and study of the ions Pb(II) and Cd(II) adsorption on the solid phase. The Fourier transform infrared spectroscopy (FT IR) was used to investigate the sisal structure and the specific BET surface area was analyzed. The biosorption potential of sisal as biosorbent for the removal of the ions Pb(II) and Cd(II) from aqueous solution was investigate considering the followings parameters: pH, biomass amount and contact time. Langmuir and Freundlich isotherms were used to evaluate adsorption behavior of the ions on this solid phase. The results showed that sisal has a surface area to adsorption of 0.0233 m2 g− 1, and the OH and CO functional groups are the main involved in the biosorption. The best interpretation for the experimental data was given by Freundlich isotherm that proposes a monolayer sorption with a heterogeneous energetic distribution of active sites, accompanied by interactions between sorbed molecules. The maximum monolayer biosorption capacity was found to be 1.85 mg g− 1 for Cd (II) and 1.34 mg g− 1 for Pb (II) at pH 7 and 296 K. This phase solid can be used for biosorption of cadmium and lead in polluted natural waters.  相似文献   

11.
The use of cheap, high-efficiency, and ecofriendly adsorbent has been studied as an alternative way for the removal of dyes from wastewater. This paper investigated the use of waste brewery’s yeast for the removal of acid orange 7 from aqueous solution. The optimum removal of acid orange 7 was found to be 3.561 mg/g at pH 2.0, 10 mg/L initial concentration and 303 K. The kinetic studies indicated that the biosorption process of acid orange 7 agreed well with the pseudo-second-order model. The external diffusion is the rate-controlling step of the initial fast adsorption (<20 min) and then the intraparticle diffusion dominated the mass transfer process. Langmuir, Freundlich, and Dubinin–Radushkevich models were applied to describe the biosorption isotherm of acid orange 7 by waste brewery’s yeast. Langmuir isotherm model fits the equilibrium data, at all the studied temperatures, better than the other isotherm models which indicates monolayer dye biosorption process. The highest monolayer biosorption capacity was found to be 2.27 × 10−3 mol/g at 303 K. The calculated thermodynamic parameters (ΔG, ΔS, ΔH) showed the biosorption process to be spontaneous and exothermic in nature. Amine or amino, amide, carboxyl, phosphate groups are responsible for the dyes biosorption based on the result of Fourier transform infrared analysis.  相似文献   

12.
The capability of Cedar bark (Cedrus atlantica Manetti) (CB) for the adsorption of Cu(II) from aqueous solutions was examined. Adsorption isotherm and kinetics of Cu(II) by CB were investigated through a number of batch adsorption experiments. The effect of experimental parameters such as initial Cu(II) concentration, adsorbent mass, initial pH and ionic strength on the removal of metal ions was examined. Equilibrium data were fitted to the Langmuir, Freundlich and Harkins–Jura isotherm models. Experimental equilibrium data were best represented by the Langmuir and Harkins–Jura isotherms. The findings revealed that the CB has the potential to be used as an adsorbent for the removal of heavy-metal ions from aqueous solutions.  相似文献   

13.
Summary The algae-clay composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Ulva sp.) and clay (Na bentonite) were used to prepare composite adsorbent. The ability of the composite adsorbent to adsorp uranium(VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time. Parameters of desorption were also investigated to recover the adsorbed uranium. The adsorption patterns of uranium on the composite adsorbent followed the Freundlich and Dubinin-Radushkevich isotherms. The thermodynamic parameters such as the enthalpy ΔH, entropy ΔS and Gibbs free energy ΔG were calculated from the slope and intercept of lnKd vs. 1/T plots. The results suggested that the Ulva sp.-Na bentonite composite adsorbent is suitable as sorbent material for recovery and biosorption/adsorption of uranium ions from aqueous solutions.  相似文献   

14.
The biosorption behaviors and mechanisms of a novel exopolysaccharide (EPS), which is secreted by a mesophilic bacterium (namely Wangia profunda (SM-A87)) isolated from deep-sea sediment, for heavy metals Cu(II) and Cd(II) have been studied in this paper. The effects of SM-A87 EPS concentration, solution pH and ionic strength on the metal uptake were investigated by employing batch adsorption techniques, respectively. The optimum biosorption capacities were observed at pH 5.0 for Cu(II) with 48.0 mg/g and pH 6.0 for Cd(II) with 39.75 mg/g, respectively. Addition of salts decreased Cu(II) or Cd(II) uptake in the order of K+ < Na+ < Ca2+. Langmuir and Freundlich models were employed to describe the biosorption equilibrium data, indicating the favorable biosorption occurs and larger biosorption capacity and intensity for Cu(II) than for Cd(II). The biosorption kinetics for both metals can be well described by pseudo-second-order kinetic model, compared with pseudo-first-order and intraparticle diffusion kinetic models. The competitive biosorption was also studied, indicating that in two-component solution with different metal ratios, the selective biosorption of SM-A87 EPS for Cu(II) was much higher than for Cd(II). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated possible functional groups (e.g., OH, COO and COC) of SM-A87 EPS involved in metal biosorption process, which indicated the potential of using SM-A87 EPS as an effective sorbent for Cu(II) or Cd(II) removal from water.  相似文献   

15.
In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea) was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.  相似文献   

16.
The binding of sulfamethoxazole (SMZ) to bovine serum albumin (BSA) was investigated by spectroscopic methods viz., fluorescence, FT-IR and UV–vis absorption techniques. The binding parameters have been evaluated by fluorescence quenching method. The thermodynamic parameters, ΔH°, ΔS°and ΔG° were observed to be −58.0 kJ mol−1, −111 J K−1 mol−1 and −24 kJ mol−1, respectively. These indicated that the hydrogen bonding and weak van der Waals forces played a major role in the interaction. Based on the Forster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (SMZ) was evaluated and found to be 4.12 nm. Spectral results showed the binding of SMZ to BSA induced conformational changes in BSA. The effect of common ions and some of the polymers used in drug delivery for control release was also tested on the binding of SMZ to BSA. The effect of common ions revealed that there is adverse effect on the binding of SMZ to BSA.  相似文献   

17.
The lead (II) biosorption potential of Aspergillus parasiticus fungal biomass has been investigated in a batch system. The initial pH, biosorbent dosage, contact time, initial metal ion concentrations and temperature were studied to optimize the biosorption conditions. The maximum lead (II) biosorption capacity of the fungal biosorbent was found as 4.02 × 10−4 mol g−1 at pH 5.0 and 20°C. The biosorption equilibrium was reached in 70 min. Equilibrium biosorption data were followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. In regeneration experiments, no significant loss of sorption performance was observed during four biosorption-desorption cycles. The interactions between lead (II) ions and biosorbent were also examined by FTIR and EDAX analysis. The results revealed that biosorption process could be described by ion exchange as dominant mechanism as well as complexation for this biosorbent. The ion exchange mechanism was confirmed by E value obtained from D-R isotherm model as well.  相似文献   

18.
Among a variety of microbial materials employed for biosorption, algae have added advantages of non-toxic and autotrophic nature. In this study, biosorption of Hg(II) was studied with red algal biomass of Porphyridium cruentum. The parameters affecting biosorption such as dosage of biosorbent, pH, contact time, initial metal concentration, temperature and effect of foreign metal cations in binary system were evaluated. Kinetic data were described with the help of pseudo-first-order and pseudo-second-order kinetic models. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models were applied to adsorption equilibrium data. According to the results, the maximum removal capacity (qmax) was 2.62?mg/g observed at pH 7 with 0.25?g/L of biosorbent dosage for Hg(II) solution containing 10?mg/L of metal ions. The Langmuir isotherm model fits best to the adsorption data while the kinetic data followed the pseudo-second-order model. Thermodynamics studies showed that the biosorption process of Hg(II) on P. cruentum was exothermic in nature.  相似文献   

19.
Simultaneous biosorption of uranium(VI) and nickel(II) ions onto Ca-pretreated Cystoseira indica biomass was studied and compared with single uranium or nickel biosorption in a fixed-bed column. Results of single biosorption showed the breakthrough and exhaustion time increase with the increase of the flow rate and inlet metal concentration for both metal ions. Also, it was observed that there was an optimum flow rate of 1.4 mL min−1 (surface loading of 0.792 cm min−1) for both metal ions in the column. Results from both single and binary systems showed the adsorption capacity of C. indica for both metal ions increases with the increasing inlet concentration of each component and C. indica had a stronger affinity for uranium than nickel ions. The binary system results showed that the presence of the second component affected the adsorption of the first one by C. indica so the antagonistic action was observed. Also, the inhibitory effect of uranium ions on the nickel adsorption was greater than nickel ions on the uranium adsorption. The uranium and nickel breakthrough curves under different conditions were described by the Thomas, Yoon-Nelson and Yan models. Among these models, the Yan model appeared to describe the experimental results better.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号