首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
杨芳丽  郭迎  石金晶  王焕礼  潘矜矜 《中国物理 B》2017,26(10):100303-100303
A modified continuous-variable quantum key distribution(CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator(LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.  相似文献   

2.
We characterize the efficiency of the practical continuous-variable quantum key distribution (CVQKD) while inserting the heralded noiseless linear amplifier (NLA) before detectors to increase the secret key rate and the maximum transmission distance in Gaussian channels. In the heralded NLA-based CVQKD system, the entanglement source is only placed in the middle while the two participants are unnecessary to trust their source. The intensities of source noise are sensitive to the tunable NLA with the parameter g in a suitable range and can be stabilized to the suitable constant values to eliminate the impact of channel noise and defeat the potential attacks. Simulation results show that there is a well balance between the secret key rate and the maximum transmission distance with the tunable NLA.  相似文献   

3.

Gaussian modulation is one of the key steps for the implementation of continuous-variable quantum key distribution (CVQKD) schemes. However, imperfection in the Gaussian modulation may introduce modulation noise that can deteriorate the performance of CVQKD systems. In this paper, we mainly investigate how to improve the performance of a CVQKD system from different aspects. First, we explore the several different origins, impacts and monitoring schemes for the modulation noise in detail. Then, we discuss the practical performance of a CVQKD system with an untrusted noise model and neutral party model, respectively. These analyses indicate that the neutral party model should be reasonably regarded as a general noise model, which will passively and greatly raise the performance of the system. Further, we propose a dynamic auto-bias control scheme to actively resist the modulation noise which comes from the drift of bias point of the amplitude modulator. Together these methods contribute to the improvement of the practical performance of CVQKD systems with imperfect Gaussian modulation.

  相似文献   

4.

Phase estimation and compensation is one of the enabling functionalities in continous-variable quantum key distribution (CVQKD). Recently, a novel CVQKD scheme has been independently proposed to combat the local oscillator (LO) side channel attacks. Furthermore, we have carried out a proof-of-principle experimental study on the feasibility of the CVQKD without sending a LO. However, this scheme contains a serious weakness: The phase noise caused by the two different lasers between the sender and the receiver would severely destroy the quantum signal and finally reduce the secure distance. In this paper, we investigate the optical phase noise and explore the optimal approach to estimate and compensate such kind of noise with appropriate data overhead. Numerical simulations show that our scheme can successfully reconstruct the phase drifts even at low signal-to-noise ratio conditions. We also suggest that a higher accuracy of phase estimation could be achieved by using the frequency division multiplexing scheme. This opens an opportunity to employ advanced pilot-aided phase estimation techniques in quantum communication system.

  相似文献   

5.
相比于离散变量量子密钥分发,连续变量量子密钥分发虽然具备更高的安全码率等优势,但是在安全传输距离上却略有不足.尽管量子催化的运用对高斯调制连续变量量子密钥分发协议的性能,尤其在安全传输距离方面有着显著的提升,然而能否用来改善离散调制协议的性能却仍然未知.鉴于上述分析,本文提出了一种基于量子催化的离散调制协议的方案,试图在安全密钥率、安全传输距离和最大可容忍过噪声方面进一步提升协议性能.研究结果表明,在相同参数下,当优化量子催化引入的透射率T,相比于原始四态调制协议,所提方案能够有效地提升量子密钥分发的性能.特别是,对于可容忍过噪声为0.002,量子催化可将安全通信距离突破300 km,密钥率为10^-8bits/pulse,而过大的可容忍噪声会抑制量子催化对协议性能的改善效果.此外,为了彰显量子催化的优势,本文给出了点对点量子通信的最终极限Pirandola-Laurenza-Ottaviani-Banchi边界,仿真结果表明,虽然原始方案与所提方案都未能突破这种边界,但是相比于前者,后者能够在远距离通信上逼近于这种边界,这为实现全球量子安全通信的最终目标提供理论依据.  相似文献   

6.
钟海  叶炜  吴晓东  郭迎 《物理学报》2021,(2):298-305
量子密钥分发融合经典通信方案将连续变量量子密钥分发和经典通信合并到了一起,为将来在现有的光网络上同时进行密钥分发和经典通信提供了一个有效的方法.然而,在量子信号上叠加一个经典信号将会给连续变量量子密钥分发系统引入过噪声从而大大降低系统的性能.本文提出基于光前置放大器的量子密钥分发融合经典通信方案,即在接收端插入光前置放...  相似文献   

7.
《中国物理 B》2021,30(6):60304-060304
It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered to enhance the performance of continuous variable quantum key distribution(CVQKD), in which the non-Gaussian operations are usually placed on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD with the entangled-based scheme by operating photon-addition operation on the left-side of the entangled source.It is found that the photon-addition operation on the left-side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on the right-side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on the right-side, our scheme shows the best performance and the photon addition on the right-side is the worst.  相似文献   

8.
Seeking good error correcting codes to improve the efficiency of continuous-variable quantum key distribution(CVQKD) reconciliation is a concerning issue. Due to the introduction of multidimensional reconciliation, the error correcting techniques in the classical binary-input additive white Gaussian noise channel are applicable to CVQKD. In this Letter, we apply the quasi-cyclic low-density parity-check(QC-LDPC) codes, which are specified in 5 G protocol, to the reconciliation process. Simulation results show that the reconciliation efficiency can reach 92.6% when the code rate is 22/68 and the signal-to-noise ratio is 0.623. Such a new error correcting code points out a new direction for the development of CVQKD.  相似文献   

9.
Plug-and-play dual-phase-modulated continuous-variable quantum key distribution (CVQKD) protocol can effectively solve the security loopholes associated with transmitting local oscillator (LO). However, this protocol has larger excess noise compared with one-way Gaussian-modulated coherent-states scheme, which limits the maximal transmission distance to a certain degree. In this paper, we show a reliable solution for this problem by employing non-Gaussian operation, especially, photon subtraction operation, which provides a way to improve the performance of plug-and-play dual-phase-modulated CVQKD protocol. The photon subtraction operation shows experimental feasibility in the plug-andplay configuration since it can be implemented under current technology. Security results indicate that the photon subtraction operation can evidently enhance the maximal transmission distance of the plug-and-play dual-phase-modulated CVQKD protocol, which effectively makes up the drawback of the original one. Furthermore, we achieve the tighter bound of the transmission distance by considering the finite-size effect, which is more practical compared with that achieved in the asymptotic limit.  相似文献   

10.
吴晓东  廖骎  黄端  吴湘华  郭迎 《中国物理 B》2017,26(11):110304-110304
We show that the secret key generation rate can be balanced with the maximum secure distance of four-state continuous-variable quantum key distribution(CV-QKD) by using the linear optics cloning machine(LOCM). Benefiting from the LOCM operation, the LOCM-tuned noise can be employed by the reference partner of reconciliation to achieve higher secret key generation rates over a long distance. Simulation results show that the LOCM operation can flexibly regulate the secret key generation rate and the maximum secure distance and improve the performance of four-state CV-QKD protocol by dynamically tuning parameters in an appropriate range.  相似文献   

11.
Continuous-variable quantum key distribution(CVQKD) can be integrated with thermal states for short-distance wireless quantum communications. However, its performance is usually restricted with the practical thermal noise. We propose a method to improve the security threshold of thermal-state(TS) CVQKD by employing a heralded hybrid linear amplifier(HLA) at the receiver. We find the effect of thermal noise on the HLA-involved scheme in near-and-mid infrared band or terahertz band for direct and reverse reconciliation. Numerical simulations show that the HLA-involved scheme can compensate for the detriment of thermal noise and hence increase the security threshold of TS-CVQKD. In near-and-mid infrared band, security threshold can be extended by 2.1 dB in channel loss for direct reconciliation and 1.6 dB for reverse reconciliation, whereas in terahertz band, security threshold can be slightly enhanced for the gain parameter less than 1 due to the rise in thermal noise.  相似文献   

12.
An improved continuous variable quantum key distribution (CVQKD) approach based on a heralded hybrid linear amplifier (HLA) is proposed in this study, which includes an ideal deterministic linear amplifier and a probabilistic noiseless linear amplifier. The CVQKD, which is based on an amplifier, enhances the signal-to-noise ratio and provides for fine control between high gain and strong noise reduction. We focus on the impact of two types of optical amplifiers on system performance: phase sensitive amplifiers (PSA) and phase insensitive amplifiers (PIA). The results indicate that employing amplifiers, local local oscillation-based CVQKD systems can enhance key rates and communication distances. In addition, the PIA-based CVQKD system has a broader application than the PSA-based system.  相似文献   

13.
《Physics letters. A》2020,384(12):126340
How to lengthen the maximum transmission of continuous variable quantum key distribution (CVQKD) has been a notorious hard problem in quantum communications. Here, we propose a simple solution to this problem, i.e., quantum catalyzing CVQKD for discrete modulation with eight states. The quantum catalysis, which can facilitate the conversion of the target ensemble, is used for not only tolerating more excess noise but also lengthening the maximum transmission distance. Security analysis shows that the zero-photon catalysis (ZPC), which is actually seen as a noiseless attenuation can be used as an elegant candidate for the performance improvement of discrete modulation (DM)-CVQKD. The numerical simulations show the ZPC-involved DM-CVQKD protocol outperforms the original DM-CVQKD in terms of maximum transmission distance as well as tolerable noise. Moreover, the ZPC-involved DM-CVQKD protocol can tolerate lower reconciliation efficiency and allow the lower detection efficiency to achieve the same performance.  相似文献   

14.
Continuous-variable quantum key distribution(CVQKD) protocols with entanglement in the middle(EM) enable long maximal transmission distances for quantum communications. For the security analysis of the protocols, it is usually assumed that Eve performs collective Gaussian attacks and there is a lack of finite-size analysis of the protocols. However,in this paper we consider the finite-size regime of the EM-based CVQKD protocols by exposing the protocol to collective attacks and coherent attacks. We differentiate between the collective attacks and the coherent attacks while comparing asymptotic key rate and the key rate in the finite-size scenarios. Moreover, both symmetric and asymmetric configurations are collated in a contrastive analysis. As expected, the derived results in the finite-size scenarios are less useful than those acquired in the asymptotic regime. Nevertheless, we find that CVQKD with entanglement in the middle is capable of providing fully secure secret keys taking the finite-size effects into account with transmission distances of more than 30 km.  相似文献   

15.
罗浩  王一军  叶炜  钟海  毛宜钰  郭迎 《中国物理 B》2022,31(2):20306-020306
Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN),which can be merged in post-processing with less additional devices.The ANN-based training scheme,enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.  相似文献   

16.
Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \(\hat {x}\) or \(\hat {p}\) itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.  相似文献   

17.
The secret key rate is one of the main obstacles to the practical application of continuous-variable quantum key distribution (CVQKD). In this paper, we propose a multiplexing scheme to increase the secret key rate of the CVQKD system with orbital angular momentum (OAM). The propagation characteristics of a typical vortex beam, involving the Laguerre–Gaussian (LG) beam, are analyzed in an atmospheric channel for the Kolmogorov turbulence model. Discrete modulation is utilized to extend the maximal transmission distance. We show the effect of the transmittance of the beam over the turbulent channel on the secret key rate and the transmission distance. Numerical simulations indicate that the OAM multiplexing scheme can improve the performance of the CVQKD system and hence has potential use for practical high-rate quantum communications.  相似文献   

18.
Lingzhi Kong 《中国物理 B》2022,31(7):70303-070303
When developing a practical continuous-variable quantum key distribution (CVQKD), the detector is necessary at the receiver's side. We investigate the practical security of the CVQKD system with an unbalanced heterodyne detector. The results show that unbalanced heterodyne detector introduces extra excess noise into the system and decreases the lower bound of the secret key rate without awareness of the legitimate communicators, which leaves loopholes for Eve to attack the system. In addition, we find that the secret key rate decreases more severely with the increase in the degree of imbalance and the excess noise induced by the imbalance is proportional to the intensity of the local oscillator (LO) under the same degree of imbalance. Finally, a countermeasure is proposed to resist these kinds of effects.  相似文献   

19.
Qingquan Peng 《中国物理 B》2022,31(6):60306-060306
The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution (CVQKD) system. In traditional implementations for atmospheric channels, the 1500-to-1600-nm pulse is regarded as an ideal quantum pulse carrier. However, the underwater transmission of this pulses tends to suffer from severe attenuation, which inevitably deteriorates the security of the whole CVQKD system. In this paper, we propose an alternative scheme for implementations of CVQKD over satellite-to-submarine channels. We estimate the parameters of the trans-media channels, involving atmosphere, sea surface and seawater and find that the short-wave infrared performs well in the above channels. The 450-nm pulse is used for generations of quantum signal carriers to accomplish quantum communications through atmosphere, sea surface and seawater channels. Numerical simulations show that the proposed scheme can achieve the transmission distance of 600 km. In addition, we demonstrate that non-Gaussian operations can further lengthen its maximal transmission distance, which contributes to the establishment of practical global quantum networks.  相似文献   

20.
The estimation of phase noise of continuous-variable quantum key distribution protocol with a local local oscillator (LLO CVQKD), as a major process in quantifying the secret key rate, is closely relevant to the intensity of the phase reference. However, the transmission of the phase reference through the insecure quantum channel is prone to be exploited by the eavesdropper (Eve) to mount attacks. Here, we introduce a polarization attack scheme against the phase reference. Presently, in a practical LLO CVQKD system, only part of the phase reference pulses are measured to compensate for the polarization drift of the quantum signal pulses in a compensation cycle due to the limited polarization measurement rate, while the other part of the phase reference pulses are not measured. We show that Eve can control the phase noise by manipulating the polarization direction of the unmeasured phase reference to hide her attack on the quantum signal. Simulations show that Eve can obtain partial or total key rates information shared between Alice and Bob as the transmission distance increases. Improving the polarization measurement rate to 100% or monitoring the phase reference intensity in real-time is of great importance to protect the LLO CVQKD from polarization attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号