首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of doped low‐valence cations on the properties of the SnP2O7 proton conductor at ambient temperature are investigated from changes in solid‐state NMR spectra and nuclear magnetic relaxation times. Although the T1H values increased with decreasing acidity as a result of cation exchange, the 1H chemical shifts moved to lower field in Al‐ and In‐doped materials compared with undoped ones. Furthermore, the shifts changed to higher field in Mg‐doped materials, suggesting the existence of different protonic species in those materials. The bulk phosphate chemical shifts in the 31P dipolar‐decoupling MAS NMR spectra were very similar, regardless of the nature and amount of the doping species. On the other hand, by 1H/31P cross‐polarization MAS NMR, P2O7 signals interacting with an interstitial proton [Q1(proton)] were observed in all the undoped and doped SnP2O7, while acidic P–OH‐type phosphate signals [Q1(acid)] were additionally observed in the Mg‐doped conductor. The different affinity of the proton with the dopants and phosphates caused lower conductivity and larger activation energy in the Mg‐doped materials, compared with those in the In‐ and Al‐doped materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Diselenadiphosphetane Diselenides and Triselenadiphospholane Diselenides – Synthesis and Characterization by 31P and 77Se Solid‐State NMR Spectroscopy 1,3‐Diselena‐2,4‐diphosphetane‐2,4‐diselenides (RPSe2)2 with R = Me, Et, t‐Bu, Ph, 4‐Me2NC6H4, 4‐MeOC6H4 have been synthesized by different methods. The insoluble compounds were investigated by 31P and 77Se solid‐state NMR and the purity of the compounds has been checked by their CP MAS sideband NMR spectra. The structure of the investigated compounds has been confirmed by the isotropic and anisotropic values of the chemical shifts and the 1JP–Se coupling constants. In addition, two new 1,2,4‐triselena‐3,5‐diphospholane‐3,5‐diselenides, (RPSe2)2Se (R = Me, Et), formed under similar synthesis conditions, were investigated. Their structure was derived from the 77Se satellites of 31P solution spectra and from solid‐state spectra. For (t‐BuPSe2)2 the experimentally obtained principal values of phosphorus and selenium shielding tensors are compared with values from IGLO calculations (HF und SOS DFPT). The calculated orientations of the principal axes are discussed.  相似文献   

3.
A comparative structural study of LiMPO4 (M = Mn, Fe, Co, Ni) orthophosphates and Li2MPO4F (M = Co, Ni) fluorophosphates obtained by mechanochemically assisted solid-state synthesis is performed using powder XRD, IR, and NMR spectroscopy methods. It is shown that all compounds crystallize in the orthorhombic symmetry (space group Pnma). Lattice parameters decrease on passing from Mn to Ni, which is due to the decrease in the ionic radius of the d metal. According to the IR spectroscopy data, in this series an increase in the covalency of the P–O bond is observed along with a decrease in the covalency of the M–O bond. On passing to fluorophosphates, the symmetry of PO4 tetrahedra increases. 6Li and 31P NMR spectra of all compounds are characterized by the dependence of the contact shift on the nature of metal M and the degree of distortion of the MO6 coordination polyhedron. 6Li MAS NMR line width is noticeably affected by the concentration of structural defects. Unlike orthophosphates with equivalent lithium ions, fluorophosphates contain lithium ions in three different positions.  相似文献   

4.
29Si and 23Na Solid State MAS NMR Investigations of Modifications of the Sodium Phyllosilicate Na2Si2O5 . The results of 29Si- and 23Na-MAS NMR investigations on four modifications of the synthetic Na2Si2O5 demonstrate that the α-, β- and δ-modifications are characterized unequivocally by the parameters of the corresponding NMR spectra. The studies on γ-Na2Si2O5 show that this sample contains a large amount of secondary compounds. For α- und β-Na2Si2O5 the the structural details of the silicate sheets are reflected by the 29Si MAS NMR spectra while from the 23Na MAS NMR spectra conclusions about the coordination number of the sodium atoms can be derived. The 29Si MAS NMR investigations on δ-Na2Si2O5 indicate that the silicate sheet of this modification consist of identical SiO4-tetrahydra the parameter of which differ from those of α- and β-Na2Si2O5. The 23Na MAS NMR studies show that in the interlayer space of δ-Na2Si2O5 two nonidentical sodium atoms exists. The NMR results give rise to the suggestion that one of the sodium is surrounded by five and the other one by six oxygen atoms.  相似文献   

5.
The feasibility of solid‐state magic angle spinning (MAS) 31P nuclear magnetic resonance (NMR) spectroscopy and 23Na NMR spectroscopy to investigate both phosphates and Na+ ions distribution in semi‐hard cheeses in a non‐destructive way was studied. Two semi‐hard cheeses of known composition were made with two different salt contents. 31P Single‐pulse excitation and cross‐polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively ‘mobile’ fraction of colloidal phosphates was evidenced. The detection by 23Na single‐quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of ‘bound’ sodium ions was evidenced by 23Na double‐quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na+ ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The Wilkinson’s catalyst [RhCl(PPh3)3] has been immobilized inside the pores of amine functionalized mesoporous silica material SBA‐3 and The structure of the modified silica surface and the immobilized rhodium complex was determined by a combination of different solid‐state NMR methods. The successful modification of the silica surface was confirmed by 29Si CP‐MAS NMR experiments. The presence of the Tn peaks confirms the successful functionalization of the support and shows the way of binding the organic groups to the surface of the mesopores. 31P‐31P J‐resolved 2D MAS NMR experiments were conducted in order to characterize the binding of the immobilized catalyst to the amine groups of the linkers attached to the silica surface. The pure catalyst exhibits a considerable 31P‐31P J‐coupling, well resolvable in 2D MAS NMR experiments. This J‐coupling was utilized to determine the binding mode of the catalyst to the linkers on the silica surface and the number of triphenylphosphine ligands that are replaced by coordination bonds to the amine groups. From the absence of any resolvable 31P‐31P J‐coupling in off‐magic‐angle‐spinning experiments, as well as slow‐spinning MAS experiments, it is concluded, that two triphenylphosphine ligands are replaced and that the catalyst is bonded to the silica surface through two linker molecules.  相似文献   

7.
Polymorphism of Bis(dineopentoxyphosphorothioyl)diselenide – Correlation of X‐Ray Structure and MAS NMR Data The crystal structures of two polymorphs of the title compound were determined by single‐crystal X‐ray methods and refined both at room temperature and 250 K. A triclinic and a monoclinic phase were discovered and studied. Both modifications are centrosymmetrical layer structures. The numerically clearly significant differences were observed in unit cell volumes as well as in alternating disproportions of distances of atoms being chemically and crystallographically equivalent as a result of discontinuously distributed conformational changes along the single bonds. Phase transitions were not observed by cooling up to 240 K. Lowering temperatures single crystals of both phases decompose because of the considerable anisotropy of intermolecular interaction. The small differences of molecular structure produce slightly splitted 31P CP MAS NMR signals. A comparison of the chemical shifts from 13C CP MAS NMR spectra and from quantum‐chemical calculations leads to the conclusion that the inner rotation around CH2–Cq bonds is not frozen in the solid state.  相似文献   

8.
Pb‐containing hydroxylapatite phases synthesized under aqueous conditions were investigated by X‐ray diffraction and solid‐state nuclear magnetic resonance (NMR) techniques to determine the Pb, Ca distribution. 31P and 1H magic‐angle spinning (MAS) NMR results indicate slight shifts of the isotropic chemical shift with increased Ca content and complex lineshapes at compositions with near equal amounts of Ca and Pb. 31P{207Pb} and 1H{207Pb} rotational‐echo double resonance (REDOR) results for intermediate compositions show that resolved spectral features cannot be assigned simply in terms of local Ca, Pb configurations or coexisting phases. 207Pb MAS NMR spectra are easily obtained for these materials and contain well‐resolved resonances for crystallographically unique A1 and A2 Pb sites. Splitting of the A1 and A2 207Pb resonances for pure hydroxyl‐pyromorphite (Pb10(PO4)6(OH)2) compared to natural pyromorphite (Pb5(PO4)3Cl) suggests symmetry reduced from hexagonal. We find that 207Pb{1H} CP/MAS NMR is impractical in Pb‐rich hydroxylapatites due to fast 207Pb relaxation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The reaction of the bis‐chlorophosphines 1 a – 1 d with bis(2‐chloroethyl)amine hydrochloride in the presence of triethylamine and with various trimethylsilylamines led to a new class of bis‐phosphorus ligands 2 a – 2 c and 3 a – 3 g . 31P‐NMR studies suggested that the bis‐phosphorus ligands undergo rotation reactions about the alkyl bridge in polar solvents. Compounds 2 a – 2 c showed initially only one sharp singlet each in their 31P‐NMR spectra. After a few days at room temperature, two signals were observed. Similar results were observed for 3 a – 3 g . In the solid state, the two phosphorus atoms in 2 c are not equivalent, as was confirmed by the observation of two signals in the solid state 31P‐NMR spectrum. Oxidation reactions of 2 a – 2 c by the hydrogen peroxide‐urea 1 : 1 adduct (NH2)2C(:O) · H2O2 led to the formation of the corresponding phosphoryl compounds 4 a – 4 c . Reaction of 2 a and 3 a with Pt[COD]Cl2 (COD = 1.5‐Cyclooctadiene) furnished the complexes 5 and 6 . The NMR spectra suggested that the two chlorine atoms are in cis position. X‐ray structure analyses were conducted for 2 a , which exhibits twofold symmetry; 2 c , which is linked into dimers by hydrogen bonds C–H…O; and 6 , confirming the cis configuration.  相似文献   

10.
We have synthesized a series of lithium-containing double phosphates of molybdenum: α′-, α-, γ-, β′-, β-Li3MO2(PO4)3, LiMo2(PO4)3, LiMoP2O7. Using spectroscopic methods, we have established the local environment of Mo3+, Mo4+. We have determined the conductivity of the synthesized double phosphates. A characteristic features of the structure of double phosphates of molybdenum is a significant lowering of the symmetry of the MO6 octahedron, which affects both the spectroscopic characteristics and the conductivity. We have studied the composition-structure-property relationship for molybdenum-containing representatives of the series {M2P3O12}3− and {MP2O7}1−. The presence of highly polarized, distorted MoO6 octahedra in the structure of LiMoP2O7 is the reason for the high electrical conductivity of the material. Kiev Taras Shevchenko University, 64 Vladimirskaya ul., Kiev 252033, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 35, No. 6, pp. 362–366, November–December, 1999.  相似文献   

11.
Recently, bisaminophosphonates found applications as therapeutic agents for curing bone disorders. When trying to relate the structures of substituted piperid‐1‐ylmethylenebisphosphonic with their biological properties, non‐typical findings that in 31P NMR spectra of 2‐methyl‐piperid‐1‐ylmethylenebisphosphonic and 2‐ethyl‐piperid‐1‐ylmethylenebisphosphonic acids, two separate singlets from each of the phosphonic groups were observed, while their analogues bearing substituent in position 3 exhibit only one signal. Their presence was explained by freezing of the molecular motions by strong hydrogen bonding between NH and P = O atoms. In this work, synthesis as well as spectroscopic and theoretical investigations of the tetraethyl esters of 2‐methyl‐piperid‐1‐ylmethylenebisphosphonic in its racemic and enatiomerically pure forms are reported. Their 31P NMR spectra revealed two sets of dublets, which indicate the presence of two non‐equivalent phosphorous atoms. More detailed NMR and theoretical studies indicated that the nonequivalent phosphorous signals in 31P NMR spectra may results from the absence of C2 symmetry of the molecule along with the presence of large ester groups blocking the internal molecular motion around C—N bond, and thus blocking the interchange of ring conformation. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:774–781, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20349  相似文献   

12.
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy‐polyethyleneglycol‐monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid‐state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13C{1H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton‐phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Reaction of bicyclic β‐P4S3I2 with enantiomerically pure (R)‐Hpthiq (1‐phenyl‐1,2,3,4‐tetrahydroisoquinoline) and Et3N gave a solution of a single diastereomer of the unusually stable diamide β‐P4S3(pthiq)2, accounting for 83 % of the phosphorus content. Despite the steric bulk of the substituents, each amide group of this could adopt either of two rotameric positions about their P–N bonds, so that, at 183 K, 31P NMR multiplets for four rotamers could be observed and the spectra of three of them analysed fully. The large 2J(P–P–P) coupling became greater (253, 292, 304 Hz) with decreasing abundance of the individual rotamers. The rotamers were modelled at the ab initio RHF/3–21G* level, and relative NMR chemical shifts predicted by the GIAO method using a locally dense basis set, allowing the observed spectra to be assigned to structures. Calculations at the same level for the model compound α‐P4S3(pthiq)Cl confirmed the assignments of low‐temperature rotamers of α‐P4S3(pthiq)I reported previously. Changes in observed P–P coupling constants and 31P chemical shifts, on rotating a pthiq substituent, could then be compared between β‐P4S3(pthiq)2 and α‐P4S3(pthiq)I, confirming both sets of assignments. The most abundant rotamer of β‐P4S3(pthiq)2 was not the one with the least sterically crowded sides of both pthiq substituents pointing towards the P4S3 cage, because of interaction between the two substituents. Only by using a DFT method could relative abundances of rotamers of β‐P4S3(pthiq)2 be predicted to be in the observed order. Use of racemic Hpthiq gave also the two diastereomers of β‐P4S3(pthiq)2 with Cs symmetry, for which the room temperature 31P{1H} NMR spectra were analysed fully.  相似文献   

14.
A comprehensive experimental and numerical study of the potential of fast amplitude (FAM) irradiation for improving the triple‐quantum (3Q) magic angle spinning (MAS) NMR spectra of half‐integer nuclei (23Na, 27Al, 45Sc, 93Nb) was carried out. Materials of academic and industrial importance, such as infrared‐emitter Na3YSi3O9, microporous aluminophosphate VPI‐5, mineral andalusite, calcined kaolinite, Sc2O3 and relaxor ferroelectric PMN, were investigated. It was found that FAM pulses are indeed of practical relevance and particularly useful for the observation of the NMR resonances given by nuclei in distorted local environments (large quadrupole coupling constants). In addition, a novel strategy for the optimization of the FAM‐II MQ MAS NMR experiment, which improves the multiple‐ to single‐quantum coherence transfer efficiency, is also reported. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
2H, 31P, and 1H‐magic‐angle‐spinning (MAS) solid‐state NMR spectroscopic methods were used to elucidate the interaction between sorbic acid, a widely used weak acid food preservative, and 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) bilayers under both acidic and neutral pH conditions. The linewidth broadening observed in the 31P NMR powder pattern spectra and the changes in the 31P longitudinal relaxation time (T1) indicate interaction with the phospholipid headgroup upon titration of sorbic acid or decanoic acid into DMPC bilayers over the pH range from 3.0 to 7.4. The peak intensities of sorbic acid decrease upon addition of paramagnetic Mn2+ ions in DMPC bilayers as recorded in the 1H MAS NMR spectra, suggesting that sorbic acid molecules are in close proximity with the membrane/aqueous surface. No significant 2H quadrupolar splitting (ΔνQ) changes are observed in the 2H NMR spectra of DMPC‐d54 upon titration of sorbic acid, and the change of pH has a slight effect on ΔνQ, indicating that sorbic acid has weak influence on the orientation order of the DMPC acyl chains in the fluid phase over the pH range from 3.0 to 7.4. This finding is in contrast to the results of the decanoic acid/DMPC‐d54 systems, where ΔνQ increases as the concentration of decanoic acid increases. Thus, in the membrane association process, sorbic acids are most likely interacting with the headgroups and shallowly embedded near the top of the phospholipid headgroups, rather than inserting deep into the acyl chains. Thus, antimicrobial mode of action for sorbic acid may be different from that of long‐chain fatty acids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The first examples of dimeric, di‐PtII‐containing heteropolytungstates are reported. The two isomeric di‐platinum(II)‐containing 22‐tungsto‐2‐phosphates [anti‐PtII2(α‐PW11O39)2]10? ( 1 a ) and [syn‐PtII2(α‐PW11O39)2]10? ( 2 a ) were synthesized in aqueous pH 3.5 medium using one‐pot procedures. Polyanions 1 a and 2 a contain a core comprising two face‐on PtO4 units, with a Pt???Pt distance of 2.9–3 Å. Both polyanions were investigated by single‐crystal XRD, IR, TGA, UV/Vis, 31P NMR, ESI‐MS, CID‐MS/MS, electrochemistry, and DFT. On the basis of DFT and electrochemistry, we demonstrated that the {Pt2II} moiety in 1 a and 2 a can undergo fully reversible two‐electron oxidation to {Pt2III}, accompanied by formation of a single Pt?Pt bond. Hence we have discovered the novel subclass of PtIII‐containing heteropolytungstates.  相似文献   

17.
Chemistry of Polyfunctional Molecules. 133. X‐Ray Crystal Structural, Solid‐state 31P CP/MAS NMR, TOSS, 31P COSY NMR, and Mechanistic Contributions to the Co‐ordination Chemistry of Octacarbonyldicobalt with the Ligands Bis(diphenylphosphanyl)amine, Bis(diphenylphosphanyl)methane, and 1,1,1‐Tris(diphenylphosphanyl)ethane Co2(CO)8 reacts with bis(diphenylphosphanyl)amine, HN(PPh2)2 (Hdppa, 1 ), in two steps to afford the known compound [Co(CO)(Hdppa‐κ2P)2][Co(CO)4] · 2 THF ( 6 a · 2 THF). The intermediate [Co(CO)2(Hdppa‐κ2P) · (Hdppa‐κP)][Co(CO)4] · dioxane · n‐pentane ( 5 · dioxane · n‐pentane) was isolated for the first time and was characterized by X‐ray analysis. The cation 5 + exhibits a slightly distorted trigonal‐bipyramidal geometry. Detailed 31P‐NMR investigations (solid‐state CP/MAS NMR, TOSS, 31P‐COSY, 31P‐EXSY) showed that the additional tautomer [Co(CO)2(Hdppa‐κ2P)(Ph2P–N=P(H)Ph2‐κP)]+ ( 5 ′+) is present in solution. The tautomer equilibrium is slow in the NMR time scale. In contrast to the solid state only tetragonal pyramidal species of 5 are found in solution. At –90 °C there is slow exchange between the three diastereomeric species 5 a +– 5 c +. Compound 5 forms [Co(CO) · (Hdppa‐κ2P)2]BPh4 · THF ( 6 b · THF) in THF with NaBPh4 under CO‐Elimination. A X‐ray diffraction investigation shows that the cation 6 + consists of a slightly distorted trigonal‐bipyramidal co‐ordination polyeder. However, a distorted tetragonal‐pyramidal structure has been found for the cation 7 + of the related compound [Co(CO)(dppm)2][Co(CO)4] · 2 THF ( 7 · 2 THF; dppm = bis(diphenylphosphanyl)methane, Ph2PCH2PPh2). A comparison with the known [8] trigonal‐bipyramidal stereoisomer, ascertained for 7 + of the solvent‐free 7 , is described. In solutions of 6 a · 2 THF and 7 · 2 THF 13C{1H}‐ and 31P{1H}‐NMR spectra indicate an exchange of all CO and organophosphane molecules between cobalt(I) cation and cobalt(–I) anion. A concerted mechanism for the exchange process is discussed. CO elimination leads to discontinuance of the cyclic mechanism by forming binuclear substitution products such as the isolated Co2(CO)2 · (μ‐CO)2(μ‐dppm)2 · 0.83 THF ( 8 · 0.83 THF), which was characterized by spectroscopy and X‐ray analysis. For the dissolved [Co(CO)2CH3C(CH2PPh2)3][Co(CO)4] · 0.83 n‐pentane ( 9 a · 0.83 n‐pentane) no CO and triphos exchange processes between the cation and the anion are observed. Metathesis of 9 a · 0.83 n‐pentane with NaBPh4 yields [Co(CO)2CH3C(CH2PPh2)3]BPh4 ( 9 b ) which has been characterized by single‐crystal X‐ray analysis. The cation shows a small distorted tetragonal‐pyramidal structure.  相似文献   

18.
Gold(I)‐polyoxometalate hybrid complexes 1 – 4 ([PPh3AuMeCN]xH4?xSiW12O40, x=1–4) were synthesized and characterized. The structure of the primary gold(I)–polyoxometalate 1 (x=1) was fully ascertained by XRD, FTIR, 31P and 29Si magic‐angle spinning (MAS) NMR, mass spectroscopy, and SEM–energy dispersive X‐ray spectroscopy (EDX) techniques. Moreover, this complex exhibited better catalytic activity and selectivity compared with standard, homogeneous, gold catalysts in the new rearrangement of propargylic gem‐diesters.  相似文献   

19.
Synthesis, Crystal Structure and Spectroscopical Characterization of Palladium(II)‐Diphosphate Pd2P2O7 Pd2P2O7 is synthesized by heating (Tmax = 500 °C) stoichiometric amounts of PdO and phosphoric acid. Using chemical vapour transport experiments (850 °C → 750 °C, addition of PdCl2) Pd2P2O7 was crystallized. Pd2P2O7 adopts its own structure type (C 2/c (No. 15), Z = 4, a = 13,151(2) Å, b = 5,172(1) Å, c = 8,139(1) Å, β = 97,52(1)°, 1160 independent reflections, 55 variables, R1 = 0,021 and wR2 = 0,050). Square‐planar [PdO4]‐units are linked by diphosphate‐groups generating a 3D framework. Within this framework ribbons may be distinguished. Thus Pd2P2O7 might be described as palladium(II)‐[diphosphatopalladate(II)]. The results of various spectroscopic measurements (IR, Raman, UV/VIS, 31P‐MAS‐NMR) are reported and discussed within the context of the crystal structure.  相似文献   

20.
Stepwise introduction of the potential tripod ligands tris(3,5‐dimethyl‐1‐pyrazolyl)borate (Tp*) and tris(1‐cyclohepta‐2,4,6‐trienyl)phosphane into the coordination sphere of rhodium(I) leads mainly to [Tp*Rh{P(C7H7)3}] ( 4 ), in which Tp* is linked to the rhodium through a single pyrazolyl group and a non‐linear B–H–Rh bridge. This is the novel, now firmly established coordination mode κ2(N,B–H). The phosphane ligand is coordinated through one Rh–P and two Rh‐olefin bonds. Important structural features determined for the crystalline state of 4 are retained in solution, as shown by the 1H, 11B, 13C, 31P and 103Rh NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号