首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unsymmetrical, dialkyl‐substituted N,N‐dialkyl‐N‐acyl(aroyl)thioureas show E,Z configurational isomerism at room temperature in solution, which is also expressed in the existence of cis‐[Pt(ZZ‐L‐S,O)2], cis‐[Pt(EZ‐L‐S,O)2] and cis‐[Pt(EE‐L‐S,O)2] complexes derived from these ligands. These configurational isomers were assigned by means of a double magnetization transfer 1H/13C/195Pt correlation NMR experiment, despite the fact that the long‐range 5J(195Pt, 1H) and 4J(195Pt, 13C) scalar couplings are not directly observable in their 1H and 13C spectra at high field. Depending on the ligand structure, the relative amounts of cis‐[Pt(ZZ‐L‐S,O)2], cis‐[Pt(EZ‐L‐S,O)2] and cis‐[Pt(EE‐L‐S,O)2] complexes are in the ranges 40–42% ZZ, 46–47% ZE and 12–13% EE. The cis‐bis[N‐methyl‐N‐(tert‐butyl)‐N‐(2,2‐dimethylpropanoyl)thioureato]platinum(II) complex is found to occur exclusively as the ZZ isomer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The 1H{15N} NMR spectrum of 5,7‐diphenyl‐1,2,4‐triazolo[1,5‐a]‐pyrimidine ( 3 ) was measured by GHMQC, unambiguously assigned and compared with the spectra of 1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) and 5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 2 ). A series of Au(III) chloride complexes of general formula AuLCl3, where L = 1 , 2 , 3 , was synthesized and studied by 1HH{15N} GHMQC and 1H{13C} GHMBC. Low‐frequency shifts of 72–74 ppm (15N) and 5–6 ppm (13C) were observed upon complexation by Au(III) ions for the coordination site N‐3 and adjacent C‐2, C‐3a atoms, respectively. The 13C signals of C‐5, C‐6, C‐7 and the 1H resonances of H‐2, H‐6 were shifted to higher frequency. Comparison with analogous Pd(II), Pt(II) and Pt(IV) complexes revealed that in the case of Au(III) coordination the 15N shifts were relatively smaller, whereas those for 13C and 1H were larger. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Octadecyl p‐coumarates undergo E–Z isomerization in daylight. Although 1H NMR, 13C NMR and 1H–1H COSY gave indications about this isomerization, the overlapping of some signals in the 1H NMR of aromatic region prevented the delineation of signals of the individual isomers. However, heteronuclear spin quantum coupling correlation (HSQC) with the unique feature of two sets of nearby δCδH correlations gave conclusive evidence for this isomerization and helped in the delineation of 1H NMR and 13C NMR signals of E‐octadecyl p‐coumarate and Z‐octadecyl p‐coumarate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The 15N as well as 1H and 13C chemical shifts of nine substituted tetrazolopyridines and their corresponding tetrazolopyridinium salts have been determined by using NMR spectroscopy at the natural abundance level of all nuclei in CD3CN. In this paper, we report, for the first time, the N‐alkylation reaction of electron deficient tetrazolopyridines. The treatment of tetrazolopyridines 5–13 with one equivalent of trialkyloxonium tetrafluoroborate leads to a mixture of two isomers, i.e. N3‐ and N2‐alkyl tetrazolo[1,5‐a]pyridinium salts. It has been observed that the N3‐isomer is always the major isomer, except in the case of the CF3 substituent, where the two isomers are obtained in the same amount. The quaternary tetrazolopyridinium nitrogen N3 is shielded by around 100 ppm (parts per million) with respect to the parent tetrazolopyridine. Experimental data are interpreted by means of density functional theory (DFT) calculations, including solvent‐induced effects, within the conductor‐like polarizable continuum model (CPCM). Good agreements between theoretical and experimental 1H, 13C and 15N NMR were found. The combination of multinuclear magnetic resonance spectroscopy with gauge including atomic orbital (GIAO) DFT calculations is a powerful tool in the structural elucidation for both neutral and cationic heterocycles and in the determination of the orientation of N‐alkylation of tetrazolopyridines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Reaction of group 12 metal dihalides in ethanolic media with 2‐acetylpyridine 4N‐phenylthiosemicarbazone ( H4PL ) and 2‐acetylpyridine‐N‐oxide 4N‐phenylthiosemicarbazone ( H4PLO ) afforded the compounds [M(H4PL)X2] (X = Cl, Br, M = Zn, Cd, Hg; X = I, M = Zn, Cd) ( 1–8 ), [Hg(4PL)I]2 ( 9 ) and [M(H4PLO)X2] (X = Cl, Br, I, M = Zn, Cd, Hg) ( 10–18 ). H4PL , H4PLO and their complexes were characterized by elemental analysis and by IR and 1H and 13C NMR spectroscopy (and the cadmium complexes by 113Cd NMR spectroscopy), and H4PL , H4PLO , ( 5 · DMSO) and ( 9 ) were additionally studied by X‐ray diffraction. H4PL is N,N,S‐tridentate in all its complexes, including 9 , in which it is deprotonated, and H4PLO is in all cases O,N,S‐tridentate. In all the complexes, the metal atoms are pentacoordinate and the coordination polyhedra are redistorted tetragonal pyramids. In assays of antifungal activity against Aspergillus niger and Paecilomyces variotii, the only compound to show any activity was [Hg(H4PLO)I2] ( 18 ).  相似文献   

7.
In the course of saponification experiments with bis(2‐cyanoethyl) 2,6‐dimethyl‐4‐(2‐nitrophenyl)‐1,4‐dihydro‐3,5‐pyridinedicarboxylate ( 1 ), an analogue of the calcium channel blocker nifedipine, three unexpected degradation products were isolated. The compounds were identified as 3‐(2‐acetamido‐1‐carboxy‐1‐propenyl)‐1‐hydroxy‐2‐indolecarboxylic acid ( 3 ), 9‐hydroxy‐1,3‐dimethyl‐β‐carboline‐4‐carboxylic acid ( 4 ) and 6‐hydroxy‐2,4‐dimethyl‐5‐oxo‐5,6‐dihydrobenzo[c][2,7]naphthyridine‐1‐carboxylic acid ( 6 ). The structures of these compounds were deduced from one‐ and two‐dimensional 1H, 13C and natural abundance 15N NMR experiments (1H,1H‐COSY, gs‐HSQC, gs‐HMBC, 15N gs‐HMBC), and corroborated by comparison of their NMR data with the respective data for structurally similar compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The relative acidities of the cis and trans isomers of a series of 1,5‐oxazaspiro[5.5]undecane derivatives were determined by measuring ΔpK in acid‐base titrations followed by 1 H NMR. Relative structural stabilities were determined by measuring substituent chemical shift and γ‐gauche effects in 13C, 15N, and 17O NMR. Crystallographic characterization of a model spiro[5.5]undecane is presented to support the basicity in solid state. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
15N NMR chemical shifts of 2‐aryl‐1,3,4‐oxadiazoles were assigned on the basis of the 1H–15N HMBC experiment. Chemical shifts of the nitrogen and carbon atoms in the oxadiazole ring correlate with the Hammett σ‐constants of substituents in the aryl ring (r2 ≥ 0.966 for N atoms). 15N NMR data are a suitable and sensitive means for characterizing long‐range electronic substituent effects. Additionally, 13C NMR data for these compounds are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Well defined E/Z isomers of N‐methoxy‐p‐nitrobenzimidoyl chloride, N‐methoxybenzimidoyl chloride, methyl N‐methylbenzohydroximate and ethyl N‐hydroxybenzimidate were prepared in order to provide model data for studies of benzhydroximic acid derivatives and related compounds. NMR parameters [1H, 13C and 15N chemical shifts and 1J(13C, 13C) coupling constants] were determined. The results show that stereochemically most significant are the values of 1J(13C, 13C) couplings between aromatic Cipso and C?N carbons and that the relationship, |Jcis| > |Jtrans|, known for this coupling from oximes, is not affected by electronegative substituents at the C?N carbon atom, but the values are. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Through photocatalysed regiospecific and stereoselective additions of cycloamines to 5‐(R)‐(l)‐menthyloxy‐2 (5H)‐furanone (3), chiral 5‐(R)‐(l)‐menthyloxy‐4‐cycloaminobutyrolactones were synthesized. In the new asymmetric photoaddition of compound 3, the N‐methyl cyclic amines (4) gave novel chiral C? C photoadducts (5) in 24–50% isolated yields with d. e. ≥ 98%. However, the secondary cyclic amines (6) afforded optically active N? C photoadducts (7) in 34–58% isolated yields with d. e. ≥ 98% under the same condition. All the synthesized optically active compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]58920, IR, 1H NMR, 13C NMR, MS and elementary analysis. The photosynthesis of chiral butyrolactones and its mechanism were discussed in detail.  相似文献   

14.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Ammonolysis of 1,2‐bis[dichloro(methyl)silyl]ethane afforded a crystalline tricyclic silazane along with polymeric material. The crystalline material could be isolated in pure state. It was analyzed by 1H, 13C, 15N and 29Si NMR spectroscopy in solution, by 13C, 15N and 29Si MAS NMR spectroscopy in the solid state, as well as by single‐crystal and powder X‐ray diffraction. The title compound exists as a single isomer in solution, whereas in the solid state the presence of several modifications is indicated, in particular by the solid‐state MAS NMR spectra.  相似文献   

16.
The complete 1H NMR chemical shift assignments of 1,2,3,4,5,6,7,8‐octahydroacridine ( 1 ), 1,2,3,4,5,6,7,8‐octahydro‐9‐(3‐pyridyl)acridine ( 2 ), 1,2,3,4,5,6,7,8‐octahydro‐9‐(4‐pyridyl)acridine ( 3 ) and the corresponding N(10)‐oxides 1a , 2a and 3a , respectively, were achieved on the basis of 400 MHz 1H NMR spectra and proton–proton decoupling, HMQC and NOEDIFF experiments. The spectral data for the above compounds provided the first experimental evidence of the difference in the anisotropy effect of the two non‐symmetrical moieties of the pyridine nucleus, and allowed us to ascertain that the shielding effect of the moiety defined by the C(2′)—N—C(6′) atoms is weaker than that of the C(3′)—C(4′)—C(5′) moiety. The 13C NMR spectra of 1 – 3 and 1a – 3a and the effect of N(10)‐oxidation on the 13C NMR chemical shifts are also discussed. The N‐oxidation of 2 and 3 with m‐chloroperbenzoic acid occurred regiospecifically, affording the N(10)‐oxides 2a and 3a free of N(1′)‐oxide isomers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The X‐ray crystal analyses of the two 11‐deoxy‐didehydrohexahydrobenzo[c]phenanthridine‐type alkaloid derivatives 3 and 4 , derived from (±)‐corynoline ( 1 ) and (+)‐chelidonine ( 2 ), established their structures as (±)‐(5bRS,12bRS)‐5b,12b,13,14‐tetrahydro‐5b,13‐dimethyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 3 ) and (+)‐rel‐(12bR)‐7,12b,13,14‐tetrahydro‐13‐methyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 4 ). The conformations of 3 and 4 in CDCl3 were determined on the basis of 1H‐ and 13C‐NMR spectroscopy.  相似文献   

18.
This paper describes a method of preparation of new 3,5′‐dioxo‐2′‐phenyl‐1,3‐dihydrospiro[indene‐2,4′‐[1,3]oxazol]‐1‐yl acetate and its 5‐chloro‐ and bromoderivatives as products of interaction of N‐benzoylglycine (hippuric acid) with corresponding ortho‐formylbenzoic acids. The reaction carried out in acetic anhydride media in the presence of piperidine as catalyst. The novel spirocompounds were purified by column chromatography from multicomponent reaction mixtures. The composition of the spiro‐products was confirmed by C, H, N element analysis. The structure was established by IR, MS, 1H‐ and 13C‐NMR analysis including COSY 1H‐13C experiments.  相似文献   

19.
We report the 1H NMR and 13C NMR chemical shifts and J(H,H), J(H,F) and J(C,F) coupling constants of 13 2,4‐diamino‐10‐methylpyrimido[4,5‐b]‐5‐quinolone derivatives, some of them with moderate activity against Plasmodium falciparum in vitro. They were characterized and assigned on the basis of 1H, 13C and 13C–1H (short‐ and long‐range) correlated spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Structural features of localization of chiral isomers of 1‐phenylethanol (R‐PhEtOH and S‐PhEtOH) and their mobility activation in homochiral metal‐organic [Zn2(bdc)(S‐lac)(dmf)] sorbent were studied with 1H and 13C NMR methods. 13C NMR chemical shifts do not show obvious advantage of selective interaction of molecule guests. But activation molecular mobility of S‐PhEtOH and R‐PhEtOH clearly indicates that stabilization of [Zn2(bdc)(S‐lac)(dmf)]·S‐PhEtOH structure is more preferable than stabilization of [Zn2(bdc)(S‐lac)(dmf)]·R‐PhEtOH structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号