首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

2.
Lin H  Maggard PA 《Inorganic chemistry》2008,47(18):8044-8052
Three new silver-vanadate hybrid solids, [Ag(bpy)]4V4O12 x 2 H2O (I), [Ag(dpa)]4V4O12 x 4 H2O (II), and Ag4(pzc)2V2O6 (III) (bpy = 4,4'-bipyridine, dpa = 1,2-bis(4-pyridyl)-ethane, pzc = pyrazinecarboxylate), were synthesized by hydrothermal methods and characterized using single crystal X-ray diffraction (I, P2(1)/c, Z = 4, a = 11.375(2) A, b = 14.281(4) A, c = 13.598(3) A, beta = 91.46(1) degrees; II, P2(1)/c, Z = 8, a = 13.5748(3) A, b = 15.3372(4) A, c = 14.1854(3) A, beta = 114.1410(9) degrees; III, P1, Z = 2, a = 3.580(1) A, b = 11.839(4) A, c = 19.321(7) A, alpha = 89.110(7) degrees, beta = 87.719(9) degrees, gamma = 86.243(8) degrees), thermogravimetric analysis, and UV-vis diffuse reflectance. The structures of I and II are constructed from neutral {Ag4V4O12}n layers of clusters that are pillared via the coordination of organic ligands (bpy for I and dpa for II) to the Ag sites in each layer. Conversely, the structure of III is composed of a three-dimensional {Ag2(pzc)(+)}n coordination network with channels containing {VO3(-)}n chains. The lattice water molecules can be removed upon heating to > or = 180 degrees C for I (reversibly) and to > or = 120 degrees C for II (irreversibly). All three decompose with the removal of organic ligands at higher temperatures of > 200-300 degrees C. Their optical bandgap sizes were measured to be 2.77 eV for I, 2.95 eV for II, and 2.45 eV for III, which decrease most notably as a result of the band widening for the more extended vanadate structure in III. All three hybrid solids are photocatalytically active for the decomposition of methylene blue under UV light (lambda < 400 nm; 1.01, 0.64, and 2.65 mg L(-1) h(-1) for I, II, and III, respectively), while only III exhibits a high activity under visible-light irradiation (lambda > 400 nm; 1.20 mg L(-1) h(-1) ). These new hybrid solids are among the first reported to exhibit high photocatalytic activities under either ultraviolet or visible-light irradiation and have also been analyzed with respect to the effect of the different organic ligands on their atomic- and electronic-structures.  相似文献   

3.
Lin H  Maggard PA 《Inorganic chemistry》2007,46(4):1283-1290
The new copper(I) rhenates, CuReO4(pyz) (I) and Cu3ReO4(q6c)2 (II) (pyz = pyrazine; q6c = quinoline-6-carboxylate), were synthesized by hydrothermal methods at 140-150 degrees C, and their structures determined via single-crystal X-ray diffraction (I, P21/n, No. 14, Z = 4, a = 7.972(1) A, b = 11.928(2) A, c = 8.430(1) A, beta = 102.161(2) degrees ; II, P21, No. 4, Z = 2, a = 8.253(2) A, b = 6.841(2) A, c = 18.256(6) A, beta = 101.37(2) degrees ) and characterized by thermogravimetric analyses and UV-vis diffuse reflectance. The structure of I contains 'CuReO4' layers that are pillared through bridging pyrazine ligands via the Cu sites, while the structure of II is polar and contains chains of 'Cu2ReO4' that are condensed into layers by coordination to linear 'Cu(q6c)2' bridges between the chains. In contrast to air-sensitive CuReO4, both hybrid analogues are stable in air owing to a stabilization of the Cu1+ oxidation state by N-donating ligands, but decompose upon heating with the removal of the organic ligands, which for I yields crystalline CuReO4. UV-vis diffuse reflectance measurements and electronic structure calculations on all three copper perrhenates, I, II, and CuReO4, show that each exhibits an optical band gap of approximately 2.1-2.2 eV, with conduction and valence band levels that are primarily derived from the Re d0 and Cu d10 orbitals, respectively, and mixed with O p-orbital contributions. In contrast to the silver rhenates, which have relatively lower energy Ag d10 orbitals, the inclusion of the organic ligands into the structures has only a very minor effect ( approximately 0.1 eV) on the band gap size. The optical absorptions, in combination with the air-stable open-framework layered structures, illustrate that heterometallic Cu1+/Re7+ oxides can be promising candidates for investigating in visible-light photocatalytic reactions.  相似文献   

4.
Yan B  Maggard PA 《Inorganic chemistry》2006,45(12):4721-4727
The layered molybdate [M2(pzc)2(H2O)x][Mo5O16] (I: M = Ni, x = 5.0; II: M = Co, x = 4.0; pzc = pyrazinecarboxylate) hybrid solids were synthesized via hydrothermal reactions at 160-165 degrees C. The structures were determined by single-crystal X-ray diffraction data for I (Cc, Z = 4; a = 33.217(4) A, b = 5.6416(8) A, c = 13.982(2) A, beta = 99.407(8) degrees , and V = 2585.0(6) A3) and powder X-ray diffraction data for II (C2/c, Z = 4; a = 35.42(6) A, b = 5.697(9) A, c = 14.28(2) A, beta = 114.95(4) degrees , and V = 2614(12) A3). The polar structure of I contains new [Ni2(pzc)2(H2O)5]2+ double layers that form an asymmetric pattern of hydrogen bonds and covalent bonds to stair-stepped [Mo5O16]2- sheets, inducing a net dipole moment in the latter. In II, however, the [Co2(pzc)2(H2O)4]2+ double layers have one less coordinated water and subsequently exhibit a symmetric pattern of covalent and hydrogen bonding to the [Mo5O16]2- sheets, leading to a centrosymmetric structure. Thermogravimetric analyses and powder X-ray diffraction data reveal that I can be dehydrated and rehydrated with from 0 to 6.5 water molecules per formula unit, which is coupled with a corresponding contraction/expansion of the interlayer distances. Also, the dehydrated form of I can be intercalated by approximately 4.3 H2S molecules per formula unit, but the intercalation by pyridine or methanol is limited to less than one molecule per formula unit.  相似文献   

5.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

6.
Du M  Bu XH  Guo YM  Liu H  Batten SR  Ribas J  Mak TC 《Inorganic chemistry》2002,41(19):4904-4908
The synthesis and crystal structure of the three-dimensional coordination polymer of an angular dipyridyl ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L) and Cu(ClO(4))(2), exhibiting the first Cu(II) diamondoid network with 2-fold interpenetration, ([Cu(L)(2)(H(2)O)(2)](ClO(4))(OH)(H(2)O)(2.5))(n) (1), together with the Cu(OAc)(2) complex of L, [Cu(L)(2)(OAc)(2)(H(2)O)](H(2)O)(2)(CH(3)OH) (2), with an unexpected mononuclear structure, are reported. Crystal data for 1: tetragonal, space group I4(1)/a, a = b = 13.477(3) A, c = 46.167(13) A, Z = 8. Crystal data for 2: triclinic, space group P(-)1, a = 7.847(2) A, b = 13.189(4) A, c = 15.948(5) A, alpha = 75.225(7) degrees, beta = 79.945(6) degrees, gamma = 77.540(5) degrees, Z = 2. The magnetic properties and anion effect are also discussed.  相似文献   

7.
Picolyl hydrazide ligands have two potentially bridging functional groups (micro-O, micro-N-N) and consequently can exist in different coordination conformers, both of which form spin-coupled polynuclear coordination complexes, with quite different magnetic properties. The complex [Cu(2)(POAP-H)Br(3)(H(2)O)] (1) involves a micro-N-N bridge (Cu-N-N-Cu 150.6 degrees ) and exhibits quite strong antiferromagnetic coupling (-2J = 246(1) cm(-)(1)). [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2) has two Cu(II) centers bridged by an alkoxide group with a very large Cu-O-Cu angle of 141.7 degrees but unexpectedly exhibits quite weak antiferromagnetic exchange (-2J = 91.5 cm(-)(1)). This is much weaker than anticipated, despite direct overlap of the copper magnetic orbitals. Density functional calculations have been carried out on compound 2, yielding a similar singlet-triplet splitting energy. Structural details are reported for [Cu(2)(POAP-H)Br(3)(H(2)O)] (1), [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2), [Cu(2)(PAOPF-2H)Br(2)(DMSO)(H(2)O)].H(2)O (3), [Cu(4)(POMP-H))(4)](NO(3))(4).2H(2)O (4), and PPOCCO (5) (a picolyl hydrazide ligand with a terminal oxime group) and its mononuclear complexes [Cu(PPOCCO-H)(NO(3))] (6) and [Cu(PPOCCO-H)Cl] (7). Compound 1 (C(12)H(13)Br(3)Cu(2)N(5)O(4)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 15.1465(3) A, b = 18.1848(12) A, c = 6.8557(5) A, beta = 92.751(4) degrees, and Z = 4. Compound 2 (C(10)H(13)Br(3)Cu(2)N(7)O(4)) crystallizes in the triclinic system, space group P, with a = 9.14130(1) A, b = 10.4723(1) A, c = 10.9411(1) A, alpha = 100.769(1), beta = 106.271(1) degrees, gamma = 103.447(1) degrees, and Z = 2. Compound 3 (C(23)H(22)Br(2)Cu(2)N(7)O(5.5)S) crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.406(2) A, b = 22.157(3) A, c = 10.704(2) A, beta = 106.21(1) degrees, and Z = 4. Compound 4(C(52)H(48)Cu(4)N(20)O(18)) crystallizes in the monoclinic system, space group P2(1)/n, with a = 14.4439(6) A, b = 12.8079(5) A, c = 16.4240(7) A, beta = 105.199(1) degrees, and Z = 4. Compound 5 (C(15)H(14)N(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.834(3) A, b = 11.797(4) A, c = 15.281(3) A, and Z = 4. Compound 6(C(15)H(13)CuN(5)O(5)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 8.2818(9) A, b = 17.886(2) A, c = 10.828(1) A, beta = 92.734(2) degrees, and Z = 4. Compound 7 (C(15)H(13)CuClN(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.9487(6) A, b = 14.3336(10) A, c = 13.0014(9) A, and Z = 4. Density functional calculations on PPOCCO are examined in relation to the anti-eclipsed conformational change that occurs on coordination to copper(II).  相似文献   

8.
We report the synthesis and crystal structures of two transition metal-based coordination polymers comprising ligand molecules not included in the original reaction mixtures but instead formed in situ during hydrothermal treatment. Zinc meso-iminodisuccinate hydrate (I), Zn(2)(C(8)H(7)NO(8)).0.57H(2)O, formed from zinc acetate and L-aspartic acid, and tetraaquanickel(II) 5,10-dioxo-5,10-dihydro-4,9-dioxa-pyrene-2,7-dicarboxylate (II), Ni(H(2)O)(4)(C(16)H(4)O(8)), formed from nickel acetate and 5-hydroxyisophthalic acid. We show that the formation of I takes place via a fumaric acid intermediate, while the formation of II requires the formation of a new C-C bond. The structure of I consists of weakly interacting sheets, while the structure of II consists of strongly hydrogen-bonded chains. Crystal data: for I, P2(1)/n (14), a = 10.073 A, b = 9.894 A, c = 12.053 A, beta = 105.605 degrees, V = 1156.87(13) A(3), Z = 4; for II, P1 (2), a = 5.011 A, b = 6.526 A, c = 12.305 A, alpha = 76.868 degrees, beta = 84.988 degrees, gamma = 87.619 degrees, V = 390.3(4) A(3), Z = 1.  相似文献   

9.
The long, rigid ligands 1,4-bis[(3-pyridyl)ethynyl]benzene (L1) and 1,4-bis[(4-pyridyl)ethynyl]benzene (L2) were used in the synthesis of 10 new organic-inorganic coordination frameworks, each of them adopting different structural motifs. Synthesis, single-crystal X-ray structure determination, and spectroscopic and thermogravimetric analyses are presented. The reactions between M(NO3)2 x xH2O; M = Cd(II), Cu(II), and Co(II); x = 3-6 and Cu(hfac)2 x H2O [hfac = bis(hexafluoroacetylacetonato)] with L1 afforded the following one-dimensional zigzag chain structures: [Cd(C20H12N2)0.5(NO3)(CH3OH)]n (1, monoclinic, C2/c; a = 7.586(1) A, b = 23.222(1) A, c = 13.572(1) A, beta = 92.824(1), Z = 4); [{Cu(C20H12N2)(NO3)2(CH3OH)} x CH3OH]n (2, orthorhombic, P2(1)2(1)2(1); a = 8.589(1) A, b = 15.766(1) A, c = 17.501(1) A, Z = 4); [Co(C20H12N2)2(NO3)2(H2O)2] (5, triclinic, P1; a = 7.493(1) A, b = 8.948(1) A, c = 14.854(1) A, alpha = 100.427(1), beta = 97.324(1), gamma = 110.901(1), Z = 1); [Cu(C20H12N2)(hfac)2]n (4, monoclinic, C2/c, a = 18.828(1) A, b = 14.671(1) A, c = 13.427(1) A, beta = 90.447(1) degrees, Z = 4). Moreover, the minority phase compound formed from Cu(NO3)2 x 3H2O and L1 yielded a metallocyclic chain structure, [Cu(C20H12N2)(NO3)]n (3, triclinic, P; a = 8.728(1) A, b = 10.018(1) A, c = 11.893(1) A, alpha = 109.991(1), beta = 97.109(1), gamma = 115.542(1), Z = 1). In addition to the dinuclear coordination complex 5, all other polymeric structures (1-4) from L1 are composed of interpenetrating 2D and 3D cross-linked zigzag chains via hydrogen-bonding interactions. The reactions between M(NO3)2 x xH2O; M = Cd(II), Cu(II), and Co(II); x = 3-6 and Cu(hfac)2 x H2O [hfac = bis(hexafluoroacetylacetonato)] and L2 were dependent on the nature of the metal center and resulted in the formation of four different interpenetrating and noninterpenetrating compounds (6-10): [Co(C20H12N2)1.5(NO3)2]n (6, triclinic, P; a = 14.172(1) A, b = 15.795(1) A, c = 18.072(1) A, alpha = 115.380(1), beta = 101.319(1), gamma = 93.427(2), Z = 4), which consists of T-shaped building blocks assembled into three-dimensional interpenetrating polycatenated ladders; [Cd(C20H12N2)2(NO3)2]n (7, monoclinic, I2/a; a = 11.371(1) A, b = 20.311(2) A, c = 15.240(2) A, beta = 100.201(2) degrees, Z = 4), which adopts a two-dimensional noninterpenetrating square-grid motif; [Cu(C20H12N2)(hfac)2]n (8, monoclinic, I2/a; a = 11.371(1) A, b = 20.311(2) A, c = 15.240(2) A, beta = 100.201(2) degrees, Z = 4), composed of three sets of distinct one-dimensional linear chains; [Cu(C20H12N2)(EtOH)(NO3)2] [Cu(C20H12N2)1.5(NO3)2] x 2EtOH (9, triclinic, P; a = 12.248(2) A, b = 13.711(3) A, c = 18.257(4) A, alpha = 108.078(4) degrees, beta = 97.890(4) degrees, gamma = 103.139(5) degrees, Z = 2) and [Cu(C20H12N2)(MeOH)(NO3)2] [Cu(C20H12N2)1.5(NO3)2] x 2MeOH (10, triclinic, P; a = 12.136(1) A, b = 13.738(2) A, c = 17.563(3) A, alpha = 107.663(3) degrees, beta = 94.805(4) degrees, gamma = 104.021(4) degrees, Z = 2). Both 9 and 10 stack into infinite interpenetrating ladders through bundles of infinite chains and are described in our preliminary communication.  相似文献   

10.
Several rhenium(V) oxo complexes with tetradentate N(2)O(2) Schiff base ligands were synthesized and characterized. The general synthetic procedure involved reaction of [NBu(4)][ReOCl(4)] with a tetradentate Schiff base ligand (L(1) = N,N'-ethylenebis(acetylacetoneimine), (acac(2)en) or L(2) = N,N'-propylenebis(acetylacetoneimine) (acac(2)pn)) in ethanol solution to generate complexes of the form trans-ReOX(L) where X = Cl(-), MeO(-), ReO(4)(-), or H(2)O. The product isolated from the reaction was found to be dependent on the reaction conditions, in particular the presence or absence of water and/or base. The mu-oxo-Re(2)O(3)(L)(2) dimers were synthesized and characterized for chemical and structural comparison to the related monomers. Conversion of the monomer to its dimer analogue was followed qualitatively by spectrophotometry. The complexes were characterized by (1)H and (13)C NMR, UV-vis, and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction. The crystallographic data reported for the structures are as follows: trans-[ReO(OH(2))(acac(2)en)]Cl (H(20)C(12)ClN(2)O(4)Re) 1, triclinic (Ponemacr;), a = 7.2888(6) A, b = 9.8299(8) A, c = 10.8195(9) A, alpha = 81.7670(10) degrees, beta = 77.1510(10) degrees, gamma = 87.6200(10) degrees, V = 747.96(11) A(3), Z = 2; trans-[ReO(OReO(3))(acac(2)en)] (H(18)C(12)N(2)O(7)Re(2)) 2, monoclinic (P2(1)/c), a = 7.5547(4) A, b = 8.7409(5) A, c= 25.7794(13) A, beta = 92.7780(10) degrees, V = 1700.34(16) A(3), Z = 4; trans-[ReOCl(acac(2)pn)] (H(20)C(13)N(2)O(3)ClRe) 3, monoclinic (P2(1)/c), a = 8.1628(5) A, b = 13.0699(8) A, c = 28.3902(17) A, beta = 97.5630(10) degrees, V = 3002.5(3) A(3), Z = 8; trans-[ReO(OMe)(acac(2)pn)] (H(23)C(14)N(2)O(4)Re) 4, monoclinic (P2(1)/c), a = 6.7104(8) A, b = 27.844(3) A, c = 8.2292(9) A, beta = 92.197(2) degrees, V = 1536.4(3) A(3), Z = 4; trans-[mu-oxo-Re(2)O(3)(acac(2)en)(2)] (H(36)C(24)N(4)O(7)Re(2)) 5, monoclinic (P2(1)/n), a = 9.0064(5) A, b = 12.2612(7) A, c = 12.3695(7) A, beta = 90.2853(10) degrees, V = 1365.94(13) A(3), Z = 2; and trans-[mu-oxo Re(2)O(3)(acac(2)pn)(2)] (H(40)C(26)N(4)O(7)Re(2)) 6, monoclinic (P2(1)/n), a = 9.1190(5) A, b = 12.2452(7) A, c = 12.8863(8) A, beta = 92.0510(10) degrees, V = 1438.01(14) A(3), Z = 2.  相似文献   

11.
Zhang XM  Fang RQ 《Inorganic chemistry》2005,44(11):3955-3959
Replacement of linear ligand L in Cu(I)XL system (X = halide or pseudohalide; L = 4,4'-bipyridine or pyrazine) by neutral species Cu(pzc)2(H2O)x (pzc = 2-pyrazinecarboxylate) resulted in mixed-valence Cu(I,II) coordination polymers [Cu2(pzc)2Br(H2O)]n (1) and [Cu3(pzc)2(CN)2(H2O)2 x 2H2O]n (2). Complex 1 has two-dimensional (4,4) topological layer constructed by [CuBr]n chains and Cu(pzc)2(H2O) species, while 2 has a three-dimensional framework formed by linkage of two-dimensional (6,3) layers via ligand-unsupported Cu(I)-Cu(I) interactions. The two-dimensional (6,3) layer in 2 is constructed by zigzag [CuCN]n chains and Cu(pzc)2(H2O)2 species. Cyanides in 2 were produced by oxidative desulfation of SCN- anions.  相似文献   

12.
A modified compositional diagram for the reactions of Ni(C(2)H(3)O(2))(2).4H(2)O with UO(2)(C(2)H(3)O(2))(2).2H(2)O and HF in aqueous media under mild hydrothermal conditions (200 degrees C) has been completed to yield three Ni(II)/U(IV) fluorides, Ni(H(2)O)(4)UF(6).1.5H(2)O (1), Ni(2)(H(2)O)(6)U(3)F(16).3H(2)O (2), and Ni(H(2)O)(2)UF(6)(H(2)O) (3). The structure of 1 consists of one-dimensional columns constructed from two parallel chains of edge-sharing dodecahedral [UF(8)] units. The sides of the columns are terminated by octahedral Ni(II) units that occur as cis-[Ni(H(2)O)(4)F(2)] polyhedra. In contrast, the crystal structure of 2 reveals a two-dimensional Ni(II)/U(IV) architecture built from edge-sharing tricapped trigonal prismatic [UF(9)] units. The top and bottom of the sheets are capped by fac-[Ni(H(2)O)(3)F(3)] octahedra. The structure of 3 is formed from [UF(8)(H(2)O)] tricapped trigonal prisms that edge share with one another to form one-dimensional chains. These chains are then joined together into a three-dimensional network by corner sharing with trans-[Ni(H(2)O)(2)F(4)] octahedra. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 14.3383(8) A, b = 15.6867(8) A, c = 8.0282(4) A, Z = 8; 2, hexagonal, space group P6(3)/mmc, a = 7.9863(5) A, c = 16.566(1) A, Z = 2; 3, monoclinic, space group C2/c, a = 12.059(1) A, b = 6.8895(6) A, c = 7.9351(7) A, beta = 92.833(2) degrees, Z = 4.  相似文献   

13.
Natarajan S 《Inorganic chemistry》2002,41(21):5530-5537
Hydro/solvothermal reactions of ZnO, HCl, H(3)PO(4), 1,4-diazacycleheptane (homopiperazine), and H(2)O under a variety of conditions yielded three new organic-inorganic hybrid materials, [C(5)N(2)H(14)][Zn(HPO(4))(2)].xH(2)O (x = approximately 0.46), I, [C(5)N(2)H(14)][Zn(3)(H(2)O)(PO(4))(2)(HPO(4))], II, and [C(5)N(2)H(14)][Zn(2)(HPO(4))(3)].H(2)O, III. While I has a one-dimensional structure, II possesses a two-dimensional layered structure, and III has a three-dimensional structure closely related to the ABW zeolitic architecture. All the compounds consist of vertex linking of ZnO(4), PO(4), and HPO(4) tetrahedral units. The fundamental building unit, single four-membered ring (S4R), is present in all the cases, and the observed differences in their structures result from variations in the connectivity between the S4R units. Thus I has a corner-shared S4R forming an infinite one-dimensional chain, II has two corner-shared chains fused through a 3-coordinated oxygen atom forming a strip and a layer with eight-membered apertures, and III has S4R units connected via oxygen atoms to give rise to channels bound by eight T atoms (T = Zn, P) in all crystallographic directions. Crystal data: I, monoclinic, space group = P2(1)/n (No. 14), a = 8.6053(3) A, b = 13.7129(5) A, c = 10.8184(4) A, beta = 97.946(1) degrees, V = 1264.35(8) A(3), Z = 4; II, monoclinic, space group = P2(1)/c (No. 14), a = 11.1029(1) A, b = 17.5531(4) A, c = 8.2651(2) A, beta = 97.922(2) degrees, V = 1595.42(5) A(3), Z = 4; III, monoclinic, space group = P2(1) (No. 4), a = 8.0310(2) A, b = 10.2475(3) A, c = 10.570(3) A, beta = 109.651(1) degrees, V = 819.24(3) A(3), Z = 2.  相似文献   

14.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

15.
A new helically pillared and chiral solid, Cu(pzc)2AgReO4 (I, pzc = pyrazinecarboxylate), was synthesized from hydrothermal reactions at 95-125 degrees C. The structural origin of its chirality, relative to the achiral M(pzc)2(H2O)2AgReO4 (II, M = Co; III, M = Ni) analogues, arises from significantly tilted pillars and hydrogen bonds to the AgReO4 layers. The new pillared structure exhibits second harmonic generation activity, CO2 absorption, thermal stability to approximately 250 degrees C, and Curie-Weiss magnetism expected for isolated Cu2+.  相似文献   

16.
Amine-templated vanadium sulfates of the formula [HN(CH(2))(6)NH][(V(IV)O)(2)(OH)(2)(SO(4))(2)].H(2)O, I, [H(3)N(CH(2))(2)NH(3)][V(III)(OH)(SO(4))(2)].H(2)O, II, and [H(2)N(CH(2))(4)NH(2)][(V(IV)O)(H(2)O)(SO(4))(2)], III, have been prepared under hydrothermal conditions. These vanadium sulfates add to the new emerging family of organically templated metal sulfates. Compound I has a linear chain structure consisting of V(2)O(8) square-pyramid dimers connected by corner-sharing SO(4) tetrahedra, creating four-membered rings along the chain. Both II and III possess simple linear chain topologies formed by VO(6) octahedra and SO(4) tetrahedra, with II having the tancoite chain structure. Compound I crystallizes in the triclinic space group P1 (No. 2) with a = 7.4852(4) A, b = 9.5373(5) A, c = 11.9177(6) A, alpha = 77.22 degrees, beta = 76.47(2) degrees, gamma = 80.86 degrees, Z = 2. Compound II: monoclinic, space group P2(1)/c (No. 14), a = 6.942(2) A, b = 10.317(3) A, c = 15.102(6) A, beta = 90.64(4) degrees, Z = 4. Compound III: triclinic, space group P1 (No. 2) with a = 6.2558(10) A, b = 7.0663(14) A, c = 15.592(4) A, alpha = 90.46(2) degrees, beta = 90.47(2) degrees, gamma = 115.68(2) degrees, Z = 2. Magnetic susceptibility measurements reveal weak antiferromagnetic interactions in I and III and ferromagnetic interactions in II.  相似文献   

17.
Six new metal-organic coordination networks based on linking unit 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (L(1)) or 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L(3)) and inorganic Cu(II), Cd(II), and Co(II) salts have been prepared and structurally characterized by single-crystal X-ray analysis. Using L(1) to react with three different Cu(II) salts, Cu(OAc)(2).H(2)O, Cu(NO(3))(2).3H(2)O, and CuSO(4).5H(2)O, respectively, two different one-dimensional (1-D) coordination polymers, [[Cu(2)L(1)(mu-OAc)(4)](CHCl(3))(2)](n) (1) [triclinic, space group P1, a = 7.416(3) A, b = 8.207(3) A, c = 14.137(5) A, alpha = 100.333(7) degrees, beta = 105.013(6) degrees, gamma = 94.547(6) degrees, Z = 1] and [[CuL(1)(NO(3))(2)](CHCl(3))(0.5)](n) (2) [monoclinic, space group C2/c, a = 28.070(8) A, b = 9.289(3) A, c = 15.235(4) A, beta = 113.537(5) degrees, Z = 8], and a chiral 3-D open framework, [[CuL(1)(H(2)O)(SO(4))](H(2)O)(2)](n) (3) [orthorhombic, space group P2(1)2(1)2(1), a = 5.509(2) A, b = 10.545(4) A, c = 29.399(11) A, Z = 4], were obtained. Reaction of L(1) and Cd(ClO(4))(2).6H(2)O or Co(ClO(4))(2).6H(2)O, in the presence of NH(4)SCN, yielded another 3-D open framework, [[CdL(1)(NCS)(2)](CH(3)OH)(1.5)](n) (4) [monoclinic, space group C2/c, a = 28.408(10) A, b = 9.997(5) A, c = 7.358(4) A, beta = 99.013(8) degrees, Z = 4], or a 2-D network, [[Co(L(1)())(2)(NCS)(2)](H(2)O)(2.5)](n) (5) [orthorhombic, space group Pnna, a = 22.210(5) A, b = 12.899(3) A, c = 20.232(4) A, Z = 4]. When L(1) was replaced by L(3) to react with Co(ClO(4))(2).6H(2)O and NH(4)SCN, another 2-D coordination polymer, [Co(L(3))(2)(NCS)(2)](n) (6) [monoclinic, space group P2(1)/c, a = 8.120(3) A, b = 9.829(4) A, c = 17.453(6) A, beta = 103.307(6) degrees, Z = 2], was constructed. These results indicate that the nature of the ligands, metal centers, or counteranions plays the critical role in construction of these novel coordination polymers. The interesting porous natures of two 3-D open frameworks 3 and 4 were investigated by TGA and XPRD techniques, and the magnetic properties of the Cu(II) and Co(II) complexes were studied by variable-temperature magnetic susceptibility and magnetization measurements.  相似文献   

18.
A new polynucleating ligand, 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), has been prepared and characterized as its dodecahydrobromide salt. Addition of base to an aqueous solution of this salt and 4 molar equivalents (m.e.) of a Ni(II) salt produces a mixture of bi- and trinuclear complexes, which can be separated by cation-exchange chromatography (CEC) and crystallized as [Ni2Ldur](ClO4)(4).2H2O (1) and [Ni3Ldur(H2O)6](ClO4)(6).9H2O (2). The "full capacity" tetranuclear complex, [Ni4Ldur(H2O)12](ClO4)(8).8H2O (3), is obtained by slow addition of Ldur to a refluxing aqueous solution of excess Ni2+ ions, followed by CEC purification. Treatment of Ldur with 4 m.e. of a copper(II) salt produces exclusively the tetranuclear complex, [Cu4Ldur(H2O)8](ClO4)(8).9H2O (4), while reaction with only 2 m.e. of Cu2+ ions yields the binuclear complex, [Cu2Ldur](ClO4)(4).4H2O (5). The X-ray structures of complexes 1,2,4, and [Cu2Ldur](ClO4)(4).3H2O (5') have been determined; all are monoclinic, P2(1)/c: for 1, a = 9.497(3) A, b = 13.665(5) A, c = 19.355(6) A, beta = 100.57(2) degrees, V = 2469(1) A3, and Z = 2; for 2, a = 22.883(7) A, b = 15.131(6) A, c = 20.298(8) A, beta = 97.20(3) degrees, V = 6973(4) A3, and Z = 4; for 4, a = 16.713(7) A, b = 16.714(6) A, c = 14.775(11) A, beta = 108.24(5) degrees, V = 3920(4) A3, and Z = 2; and for 5', a = 9.5705(1) A, b = 13.0646(1) A, c = 20.1298(2) A, beta = 103.1618(8) degrees, V = 2450.81(4) A3, and Z = 2. The metal centers in 1 and 5' lie in distorted octahedral environments, each facially coordinated by two of the triamine rings of Ldur, the cation in each case being centrosymmetric. In 2, one of the nickel(II) centers is similarly sandwiched by two triamine rings, while the other two nickel(II) centers are each coordinated by a single triamine ring from the ligand, with their distorted octahedral coordination spheres each being completed by three water molecules. In 4, the four triamine rings of Ldur bind to separate copper(II) centers, with two water molecules occupying the remaining two sites of the distorted square pyramidal (SP) coordination spheres, the cation again being centrosymmetric.  相似文献   

19.
With the new substituted pyrazine ligand pyrazine-2,3-dicarboxylic acid bis[(pyridin-2-ylmethyl)amide], H(2)L, a binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) and two [2 x 2]G grid complexes, [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) and [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3), have been synthesized and characterized spectroscopically and crystallographically. The ligand H(2)L crystallized in the triclinic space group P1, with a = 4.9882(7) A, b = 12.079(2) A, c = 14.454(2) A, alpha = 107.08(2) degrees, beta = 98.61(2) degrees, gamma = 97.54(2) degrees, V = 808.8(2) A(3), Z = 2, R1 = 0.0747, and R(w) = 0.1829 for 1319 observed reflections [I > 2 sigma(I)]. The molecule is L-shaped with a strong intramolecular bifurcated hydrogen bond in half of the molecule. In the crystal the molecules are linked by an intermolecular hydrogen bond to form a 1D polymer. The binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) crystallized in the monoclinic space group P2(1)/a, with a = 8.6859(7) A, b = 28.060(2) A, c = 9.5334(9) A, beta = 107.89(1) degrees, V = 2211.2(3) A(3), Z = 4, R1 = 0.039, and R(w) = 0.097 for 1408 observed reflections [I > 2 sigma(I)]. There are two independent copper atoms both having square pyramidal geometry. Both coordinate to a pyrazine, a pyridine, and an amide N atom. Two chlorines complete the coordination sphere of one of the copper atoms, while one chlorine atom and a water molecule complete the coordination sphere of the other. The copper(II) [2 x 2] grid complex [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) crystallized in the triclinic space group P1, with a = 17.1515(14) A, b = 17.7507(13) A, c = 19.3333(15) A, alpha = 67.34(1) degrees, beta = 69.79(1) degrees, gamma = 71.50(1) degrees, V = 4980.3(7) A(3), Z = 2, R1 = 0.083, and R(w) = 0.207 for 5532 observed reflections [I > 2 sigma(I)]. The four Cu(II) atoms are octahedrally coordinated by two pyrazine, two pyridine, and two amide N atoms and occupy the corners of a [2 x 2] grid with edge lengths, Cu...Cu, varying from 7.01 to 7.39 A. The nickel(II) [2 x 2] grid complex [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3) crystallized in the monoclinic space group C2/c, with a = 16.3388(10) A, b = 29.754(2) A, c = 20.857(1) A, beta = 101.845(1) degrees, V = 9923.6(12) A(3), Z = 4, R1 = 0.050, and wR2 = 0.101 for 3391 observed reflections [I > 2 sigma(I)]. Here the complex possesses C(2) symmetry and again each metal atom is octahedrally coordinated to two pyrazine, two pyridine, and two amide N atoms. They occupy the corners of a [2 x 2] grid with an average edge length, Ni.Ni, of 6.97 A. Of the four anions (ClO(4)(-)'s in 2 and Cl(-)'s in 3) required to equilibrate the charges in the grid complexes, two are encapsulated, one above and one below the plane of the four metal atoms. The remaining two anions are located between the "wings" of the ligands. Magnetic susceptibility measurements indicate that the binuclear complex 1 is antiferromagnetic, with a J value of -15.07 cm(-1). This is larger than the J values found for the Cu(II) (2) and Ni(II) (3) grid complexes, which were -5.87 and -2.64 cm(-1), respectively. DFT calculations have been carried out to explain the difference in the J values found for complexes 1 and 2.  相似文献   

20.
The hydrothermal reactions of MoO(3), an appropriate Cu(II) source, tetra-2-pyridylpyrazine (tpypyz), and phosphoric acid and/or an organophosphonate yielded a series of organic-inorganic hybrid materials of the copper-molybdophosphonate family. A common feature of the structures is the entrainment within the extended architectures of chemically robust [Mo(5)O(15)(O(3)PR)(2)](4)(-) clusters as molecular building blocks. The cluster is a characteristic feature of the one-dimensional materials [[Cu(2)(tpypyz)(H(2)O)(3)]Mo(5)O(15)(HPO(4))(O(3)PCH(2)CO(2)H)].H(2)O (1.H(2)O) and [[Cu(2)(tpypyz)(H(2)O)]Mo(5)O(15)(O(3)PC(6)H(5))(2)].2H(2)O (2.2H(2)O), the two-dimensional network [[Cu(2)(tpypyz)(H(2)O)(3)]Mo(5)O(15)(HPO(4))(2)].2H(2)O (5.2H(2)O) and the three-dimensional frameworks [[Cu(2)(tpypyz)(H(2)O)(2)]Mo(5)O(15)[O(3)P(CH(2))(n)()PO(3)]].xH(2)O [n = 3, x = 2.25 (6.2.25H(2)O); n = 4, x = 0.33 (7.0.33H(2)O)]. In the case of methylenediphosphonate as the phosphorus component, the unique chelating nature of the ligand precludes formation of the pentamolybdate core, resulting in the chain structures [[Cu(2)(tpypyz)(H(2)O)]Mo(3)O(8) (HO(3)PCH(2)PO(3))(2)].8H(2)O (3.8H(2)O) and [[Cu(2)(tpypyz)(H(2)O)](2)(Mo(3)O(8))(2)(O(3)PCH(2)PO(3))(3)].16.9H(2)O (4.16.9H(2)O). For structures 1-7, the secondary metal-ligand building block is the binuclear [Cu(2)(tpypyz)(H(2)O)(x)](4+) cluster. There is considerable structural versatility as a result of the variability in the number of attachment sites at the phosphomolybdate clusters, the coordination geometry of the Cu(II), which may be four-, five-, or six-coordinate, the extent of aqua ligation, and the participation of phosphate oxygen atoms as well as molybdate oxo groups in bonding to the copper sites. Crystal data: 1.H(2)O, C(26)H(28)N(6)Cu(2)Mo(5)O(28)P(2), monoclinic C2/c, a = 42.497(2) A, b = 10.7421(4) A, c = 20.5617(8) A, beta = 117.178(1) degrees, V = 8350.1(5) A(3), Z = 8; 2.2H(2)O, C(36)H(32)N(6)Cu(2)Mo(5)O(24)P(2), monoclinic P2(1)/c, a = 11.2478(7) A, b = 19.513(1) A, c = 21.063(1) A, beta = 93.608(1) degrees, V = 4613.7(5) A(3), Z = 4; 3.8H(2)O, C(26)H(40)N(6)Cu(2)Mo(3)O(29)P(4), monoclinic C2/c, a = 32.580(2) A, b = 17.8676(9) A, c = 15.9612(8) A, beta = 104.430(1) degrees, V = 8993.3(8) A(3), Z = 8; 4.16.9H(2)O, C(51)H(71.75)Cu(4)Mo(6)N(12)O(51)P(6), monoclinic P2(1)/c, a = 27.929(3) A, b = 12.892(2) A, c = 22.763(3) A, beta = 90.367(2) degrees, V = 8195.7(2) A(3), Z = 4;( )()5.2H(2)O, C(24)H(28)N(6)Cu(2)Mo(5)O(28)P(2), monoclinic P2(1)/n, a = 11.3222(4) A, b = 18.7673(7) A, c = 19.4124(7) A, beta = 98.819(1) degrees, V = 4076.1(3) A(3), Z = 4; 6.2.25H(2)O, C(27)H(28.5)N(6)Cu(2)Mo(5)O(24.25)P(2), monoclinic C2/c, a = 12.8366(5) A, b = 18.4221(8) A, c = 34.326(1) A, beta = 100.546(1) degrees, V = 7980.1(6) A(3), Z = 8; 7.(1)/(3)H(2)O, C(28)H(28.7)N(6)Cu(2)Mo(5)O(23.3)P(2), monoclinic C2/c, a = 12.577(1) A, b = 18.336(1) A, c = 36.476(3) A, beta = 91.929(2) degrees, V = 8407.3 A(3), Z = 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号