首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yin P  Gao S  Wang ZM  Yan CH  Zheng LM  Xin XQ 《Inorganic chemistry》2005,44(8):2761-2765
This paper reports the syntheses and characterization of four isomorphous compounds (NH(3)C(6)H(4)NH(3))M(2)(hedpH)(2).H(2)O [M = Fe (1), Co (2), Mn (3), Zn (4); hedp = C(CH(3))(OH)(PO(3))(2)]. Each contains two crystallographically different kinds of {M(2)(hedpH)(2)}(n) double chains, where the {M(2)(mu-O)(2)} dimer units are connected by O-P-O bridges. The double chains are connected through extensive hydrogen bonds, hence generating a three-dimensional supramolecular network. The temperature-dependent magnetic susceptibility measurements show dominant antiferromagnetic interactions in compounds 1-3, mediated through the mu-O and/or O-P-O bridges between the metal(II) centers. The magnetization measurements reveal that compounds 1-3 experience field-induced magnetic transitions at low temperatures.  相似文献   

2.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

3.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

4.
The synthesis and characterizations of a family of isomorphous [Mn(III)(2)M(III)(4)L(2)(μ(4)-O)(2)(N(3))(2)(CH(3)O)(2)(CH(3)OH)(4)(NO(3))(2)]·2H(2)O (M = Y(1), Gd(2), Tb(3), Dy(4)) are reported, where H(4)L = N,N'-dihydroxyethyl-N,N'-(2-hydroxy-4,5-dimethylbenzyl)ethylenediamine. They were obtained from the reactions of H(4)L with M(NO(3))(3)·6H(2)O, Mn(ClO(4))(2)·6H(2)O, NaN(3) and NEt(3) in a 1?:?1?:?1?:?2?:?2 molar ratio. The core structure consists of a Mn(2)M(4) unit. The four M(III) ions that are held together by two μ(4)-bridging oxygen atoms form a butterfly M(4) moiety. The M(4) core is further connected to the two five-coordinate trigonal-bipyramidal Mn(III) ions via one μ(4)-O(2-), two alkyloxo and one methoxo triple bridges. Magnetic susceptibility measurements indicate the presence of intramolecular antiferromagnetic interactions in complex 2, and overall intramolecular ferromagnetic interactions in complexes 3 and 4. The alternating current (AC) magnetic susceptibility studies revealed that complexes 3 and 4 showed frequency-dependent out-of-phase signals, which indicates that they exhibit slow relaxation of the magnetization.  相似文献   

5.
Calculations employing density functional theory (Gaussian 98, B3LYP, LANL2DZ, 6-31G) have been undertaken to interrogate the factors influencing the metathesis reaction involving M-M, C-C, and M-C triple bonds for the model compounds M(2)(EH)(6), M(2)(EH)(6)(mu-C(2)H(2)), and [(HE)(3)M(tbd1;CH)](2), where M = Mo, W and E = O, S. Whereas in all cases the ethyne adducts are predicted to be enthalpically favored in the reactions between M(2)(EH)(6) compounds and ethyne, only when M = W and E = O is the alkylidyne product [(HO)(3)W(tbd1;CH)](2) predicted to be more stable than the alkyne adduct. For the reaction M(2)(EH)(6)(mu-C(2)H(2)) --> [(HE)(3)M(tbd1;CH)](2), the deltaG degrees values (kcal mol(-)(1)) are -6 (M = W, E = O), +5 (M = Mo, E = O), +18 (M = W, E = S), and +21 (M = Mo, E = S) and the free energies of activation are calculated to be deltaG() = +19 kcal mol(-)(1) (M = W, E = O) and +34 kcal mol(-)(1) (M = Mo, E = O), where the transition state involves an asymmetric bridged structure M(2)(OH)(4)(mu-OH)(2)(CH)(mu-CH) in which the C-C bond has broken; C.C = 1.89 and 1.98 A for W and Mo, respectively. These results are discussed in terms of the experimental observations of the reactions involving ethyne and the symmetrically substituted alkynes (RCCR, where R = Me, Et) with M(2)(O(t)()Bu)(6) and M(2)(O(t)()Bu)(2)(S(t)()Bu)(4) compounds, where M = Mo, W.  相似文献   

6.
Cd(C(4)H(4)N(2))(H(2)O)(2)MoO(2)F(4) (C(4)H(4)N(2) = pyrazine, pyz) was synthesized via hydro(solvato)thermal methods and characterized by single-crystal X-ray diffraction methods (P3(2)()21, no. 154, Z = 3, a = 7.4328(7) A, c = 16.376(2) A). Both of the known M(pyz)(H(2)O)(2)MoO(2)F(4) (M = Zn, Cd) compounds are comprised of trans-M(pyz)(2)(OH(2))(2)F(2) and cis-MoO(2)F(4) octahedra that share fluoride vertices to form helical chains along the 3-fold screw axes. Individual chains are bridged to six symmetry-equivalent helices through metal-pyrazine and OH(2)...F and OH(2)...O hydrogen bonds. Structural comparisons of similar oxyfluoride chains demonstrate that they can be varied from linear to helical through (1) the replacement of pyridine or pyrazine by H(2)O molecules and (2) the substitution of cis-directing MoO(2)F(4)(2-) anions in place of trans-directing WO(2)F(4)(2-) or TiF(6)(2-) anions. Infrared absorption (IR) measurements for M = Cd show two distinct O-H stretches corresponding to hydrogen-bonded O-H...F and O-H...O groups. Contrastingly for M = Zn, IR measurements exhibit O-H stretches for averaged hydrogen-bonded O-H...(O/F) groups, free (unbound) O-H groups, and higher energy Mo-F stretches. The IR data suggest a small fraction of the O-H...F hydrogen bonds are broken in the M = Zn analogue as a result of the racemic twinning. Both compounds exhibit nonlinear optical behavior, with second harmonic generation (SHG) intensities, relative to SiO(2), of approximately 0.25 ( = 0.28 pm/V) for the racemically twinned Zn(pyz)(H(2)O)(2)MoO(2)F(4) and approximately 1.0 ( = 0.55 pm/V) for the enantiopure Cd(pyz)(H(2)O)(2)MoO(2)F(4).  相似文献   

7.
Dai Z  Chen X  Shi Z  Zhang D  Li G  Feng S 《Inorganic chemistry》2003,42(3):908-912
Two inorganic-organic hybrid compounds with the formula M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (M = Co, Ni) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compounds Co(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (1) and Ni(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (2), which are structural analogues, crystallize in the triclinic space group Ponemacr; with crystal data a = 7.9665(3) A, b = 8.1974(3) A, c = 13.8096(4) A, alpha = 85.704(2) degrees, beta = 73.5180(10) degrees, gamma = 75.645(2) degrees, V = 837.76(5) A(3), and Z = 2 and a = 7.9489(19) A, b = 8.128(2) A, c = 13.709 A, alpha = 85.838(6) degrees, beta = 73.736(8) degrees, gamma = 75.594(9) degrees, V = 823.5(4) A(3), and Z = 2, respectively. [M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10)] (M = Co, Ni) have a three-dimensional structure and consist of two subunits, [(VO(2))(SeO(3))](-) infinite chains and [M(4,4'-bipy)(H(2)O)](2+) fragments. The [(VO(2))(SeO(3))](-) chains are composed of [V(2)Se(4)O(14)](4)(-) clusters linked by VO(4)N triangular bipyramids. The 4,4'-bipy molecule as a bifunctional organic ligand is directly linked to Co or Ni and V atoms, affording the three-dimensionality. The compounds were characterized by infrared spectroscopy and differential thermal and thermogravimetric analyses.  相似文献   

8.
The binuclear complex NiII2L(H2O)2(ClO4)2(1) and the neutral tetranuclear bimetallic compounds [{M(III)(phen)(CN)4}2{NiII2L(H2O)2}].2CH3CN with M=Fe (2) and Cr (3)[H2L=11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1(9,13)]hexacosa-2,7,9,11,13(26),14,19,21(25),22,24-decaene-25,26-diol] have been synthesized and the structures of and determined by single crystal X-ray diffraction. and are isostructural compounds whose structure is made up of centrosymmetric binuclear cations [Ni2(L)(H2O)2]2+ and two peripheral [M(phen)(CN)4]- anions [M=Fe (2) and Cr (3)] acting as monodentate ligands towards the nickel atoms through one of their four cyanide nitrogen atoms. The environment of the metal atoms in 2 and 3 is six-coordinated: two phen-nitrogen and four cyanide-carbon atoms at the iron and chromium atoms and a water molecule, one cyanide-nitrogen and two phenolate-oxygens and two imine-nitrogens from the binucleating ligand L2- at the nickel atom build distorted octahedral surroundings. The values of the FeNi and CrNi separations through the single cyanide bridge are 5.058(1) and 5.174(2)A respectively, whereas the Ni-Ni distances across the double phenolate bridge are 3.098(2)(2) and 3.101(1) A (3). The magnetic properties of have been investigated in the temperature range 1.9-290 K. The magnetic behaviour of corresponds to that of an antiferromagnetically coupled nickel(II) dimer with J=-61.0(1) cm-1, the Hamiltonian being defined as H=-J S(A).S(B). An overall antiferromagnetic behaviour is observed for and with a low-lying singlet spin state. The values of the intramolecular magnetic couplings are J(Fe-Ni)=+17.4(1) cm-1 and J(Ni-Ni(a))=-44.4(1) cm-1 for and J(Cr-Ni)=+11.8(1) cm-1 and J(Ni-Ni(a))=-44.6(1) cm-1 for [H=-J(M-Ni)(S(M).S(Ni)+S(Ma).S(Nia))-J(Ni-Nia)S(Ni)S(Nia)]. Theoretical calculations using methods based on density functional theory (DFT) have been employed on in order to analyze the efficiency of the exchange pathways involved and also to substantiate the exchange coupling parameters.  相似文献   

9.
Wang Y  Feng L  Li Y  Hu C  Wang E  Hu N  Jia H 《Inorganic chemistry》2002,41(24):6351-6357
Two novel compounds, [Co(4,4'-bipy)(H(2)O)(4)](4-abs)(2).H(2)O (1) and [Mn(4,4'-bipy)(H(2)O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis. X-ray structural analysis revealed that 1 and 2 both possess unusual hydrogen-bonded three-dimensional (3-D) networks encapsulating one-dimensional (1-D) covalently bonded infinite [M(4,4'-bipy)(H(2)O)(4)](2+) (M = Co, Mn) chains. The 4-abs anions in 1 form 1-D zigzag chains through hydrogen bonds. These chains are further extended through crystallization water molecules into 3-D hydrogen-bonded networks with 1-D channels, in which the [Co(4,4'-bipy)(H(2)O)(4)](2+) linear covalently bonded chains are located. Crystal data for 1: C(22)H(30)CoN(4)O(11)S(2), monoclinic P2(1), a = 11.380(2) A, b = 8.0274(16) A, c = 15.670(3) A, alpha = gamma = 90 degrees, beta = 92.82(3) degrees, Z = 2. Compound 2 contains interesting two-dimensional (2-D) honeycomb-like networks formed by 4-abs anions and lattice water molecules via hydrogen bonding, which are extended through other crystallization water molecules into three dimensions with 1-D hexagonal channels. The [Mn(4,4'-bipy)(H(2)O)(4)](2+) linear covalent chains exist in these channels. Crystal data for 2: C(22)H(32)MnN(4)O(12)S(2), monoclinic P2(1)/c, a = 15.0833(14) A, b = 8.2887(4) A, c = 23.2228(15) A, alpha = gamma = 90 degrees, beta = 95.186(3) degrees, Z = 4.  相似文献   

10.
Reaction of M(OAc)(2).xH(2)O (M = Mn, Cu, or Cd) with di-tert-butyl phosphate (dtbp-H) in a 1:2 molar ratio in methanol followed by slow crystallization of the resultant solid in MeOH/THF medium results in the formation of three new polymeric metal phosphates [M(dtbp)(2)](n)() [M = Mn, 1 (beige); M = Cu, 2 (blue)] and [Cd(dtbp)(2)(H(2)O)](n)(), 3 (colorless)] in good yields. The formation of [Mn(dtbp)(2)](n) (1) proceeds via tetrameric manganese phosphate [Mn(4)(O)(dtbp)(6)] (4), which has been isolated in an analytically pure form. Perfectly air- and moisture-stable compounds 1-4 were characterized with the aid of analytical, thermoanalytical, and spectroscopic techniques. The molecular structures of 1-3 were further established by single-crystal X-ray diffraction studies. Crystal data for 1: C(32)H(72)Mn(2)O(16)P(4), monoclinic, P2(1)/c, a = 19.957(4) A, b = 13.419(1) A, c = 18.083(2) A, beta = 91.25(2) degrees, Z = 4. Crystal data for 2: C(16)H(36)CuO(8)P(2), orthorhombic, Pccn, a = 23.777(2) A, b = 10.074(1) A, c = 10.090(1) A, Z = 4. Crystal data for 3: C(48)H(114)Cd(3)O(27)P(6), triclinic, P1, a = 12.689(3) A, b = 14.364(3) A, c = 22.491(5) A, alpha = 84.54(3) degrees, beta = 79.43(3) degrees, gamma = 70.03(3) degrees, Z = 2. The diffraction studies reveal three different structural forms for the three compounds investigated, each possessing a one-dimensional coordination polymeric structure. While alternating triple and single dtbp bridges are found between the adjacent Mn(2+) ions in 1, uniform double dtbp bridges across the adjacent Cu(2+) ions are present in 2. The cadmium ions in the structure of 3 are pentacoordinated. Thermal analysis (TGA and DSC) indicates that compounds 1-3 convert to the corresponding crystalline metaphosphate materials M(PO(3))(2), in each case at temperatures below 500 degrees C. Similarly, the thermal decomposition of 4 results in the formation of Mn(PO(3))(3) and Mn(2)P(2)O(7). The final materials obtained by independent thermal decomposition of bulk samples have been characterized using IR spectroscopic, powder diffraction, and N(2) adsorption studies.  相似文献   

11.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

12.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

13.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

14.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

15.
Lee TB  McKee ML 《Inorganic chemistry》2012,51(7):4205-4214
The reduction potentials (E°(Red) versus SHE) of hypercloso boron hydrides B(n)H(n) (n = 6-13) and B(12)X(12) (X = F, Cl, OH, and CH(3)) in water have been computed using the Conductor-like Polarizable Continuum Model (CPCM) and the Solvation Model Density (SMD) method for solvation modeling. The B3LYP/aug-cc-pvtz and M06-2X/aug-cc-pvtz as well as G4 level of theory were applied to determine the free energies of the first and second electron attachment (ΔG(E.A.)) to boron clusters. The solvation free energies (ΔG(solv)) greatly depend on the choice of the cavity set (UAKS, Pauling, or SMD) while the dependence on the choice of exchange/correlation functional is modest. The SMD cavity set gives the largest ΔΔG(solv) for B(n)H(n)(0/-) and B(n)H(n)(-/2-) while the UAKS cavity set gives the smallest ΔΔG(solv) value. The E°(Red) of B(n)H(n)(-/2-) (n = 6-12) with the G4/M06-2X(Pauling) (energy/solvation(cavity)) combination agrees within 0.2 V of experimental values. The experimental oxidative stability (E(1/2)) of B(n)X(n)(2-) (X = F, Cl, OH, and CH(3)) is usually located between the values predicted using the B3LYP and M06-2X functionals. The disproportionation free energies (ΔG(dpro)) of 2B(n)H(n)(-) → B(n)H(n) + B(n)H(n)(2-) reveal that the stabilities of B(n)H(n)(-) (n = 6-13) to disproportionation decrease in the order B(8)H(8)(-) > B(9)H(9)(-) > B(11)H(11)(-) > B(10)H(10)(-). The spin densities in B(12)X(12)(-) (X = F, Cl, OH, and CH(3)) tend to delocalize on the boron atoms rather than on the exterior functional groups. The partitioning of ΔG(solv)(B(n)H(n)(2-)) over spheres allows a rationalization of the nonlinear correlation between ΔG(E.A.) and E°(Red) for B(6)H(6)(-/2-), B(11)H(11)(-/2-), and B(13)H(13)(-/2-).  相似文献   

16.
The compounds [((t)BuCO(2))(3)M(2)(mu-O(2)CC(6)F(4)CO(2))M(2)(O(2)C(t)Bu)(3)], M(4)PFT, where M = Mo or W, are shown by model fitting of the powder X-ray diffraction data to have an infinite "twisted" structure involving M.O intermolecular interactions in the solid state. The dihedral angle between the M(2) units of each molecule is 54 degrees. Electronic structure calculations employing density functional theory (Gaussian 98 and ADF2000.01, gradient corrected and time dependent) on the model compounds (HCO(2))(3)M(2)(mu-O(2)CC(6)F(4)CO(2))M(2)(O(2)CH)(3), where M = Mo or W, reveal that in the gas phase the model compounds adopt planar D(2)(h) ground-state structures wherein M(2) delta to bridge pi back-bonding is maximized. The calculations predict relatively small HOMO-LUMO gaps of 1.53 eV for M = Mo and 1.22 eV for M = W for this planar structure and that, when the "conjugation" is removed by rotation of the plane of the C(6)F(4) ring to become orthogonal to the M(4) plane, this energy gap is nearly doubled to 2.57 eV for M = Mo and 2.18 eV for M = W. The Raman and resonance Raman spectra of solid M(4)PFT and of Mo(4)PFT in THF solution are dominated by bands assigned to the bridging perfluoroterephthalate (pft) group. The intensities of certain Raman bands of solid W(4)PFT are strongly enhanced on changing the excitation line from 476.5 nm (off resonance) to 676.5 nm, which is on resonance with the W(2) delta --> CO(2) (pft) pi transition at ca. 650 nm. The resonance enhanced bands are delta(s)(CO(2)) (pft) at 518 cm(-)(1) and its first overtone at 1035 cm(-)(1), consistent with the structural change to W(4)PFT expected on excitation from the ground to this pi excited state. The electronic transitions for solid Mo(4)PFT (lowest at 410 nm) were not accessible with the available excitation lines (457.9-676.5 nm), and no resonance Raman spectra of this compound could be obtained. For Mo(4)PFT in THF solution, it is the band at 399 cm(-)(1) assigned to nu(MoMo) which is the most enhanced on approach to resonance with the electronic band at 470 nm; combination bands involving the C(6)F(4) ring-stretching mode, 8a, are also enhanced.  相似文献   

17.
Heterobimetallic hexanuclear cyano-bridged complexes, [{Fe(Tp)(CN)3}4{M(MeCN)(H2O)2}(2)].10H2O.2MeCN [M = Ni (1), Co (2), Mn (3); Tp = hydrotris(1-pyrazolyl)borate], have been synthesized in H2O-MeCN solution. Complexes 1-3 are isostructural and hexanuclear with [{Fe(Tp)(CN)3}4{M(MeCN)(H2O)2}2] units linked by hydrogen bonds to form a 2D-structure in the solid state. Complex 1 is a canted antiferromagnet that undergoes a field-induced spin-flop-like transition at approximately 1 T and 2 K. At 4.45 K 1 has a transition to paramagnetic state of noninteracting S = 4 magnetic clusters. However, 2 and 3 show antiferromagnetic intracluster coupling. Facile loss of solvent from 2 alters the local symmetry resulting in changing the intracluster interaction from antiferro- to ferromagnetic.  相似文献   

18.
Nanospheric hydroxo-bridged clusters of [M(20)(OH)(12)(maleate)(12)(Me(2)NH)(12)](BF(4))(3)(OH)·nH(2)O (M = Co (1), Ni (2)) with O(h) symmetry were afforded under hydrothermal condition with Co(BF(4))(2)·6H(2)O/Ni(BF(4))(2)·6H(2)O and fumaric acid in a DMF/EtOH mixed solvent. They are characterized by elemental analysis, IR, and X-ray diffraction. X-ray single crystal diffraction analyses show that these two complexes are isostructural containing an ideally cubic M(8) core in that each two M atoms are doubly bridged at the edges by one OH(-) and one maleate, while these OH(-) and maleate groups are coordinated further by exterior identical 12 M atoms which construct a perfect M(12) icosahedron to encapsulate the cubic core. To our knowledge, such large clusters with O(h) symmetry are seldom. The variable-temperature magnetic susceptibility studies reveal that these two isostructures exhibit antiferromagnetic interactions.  相似文献   

19.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

20.
The linear-type heterometallic tetramers, [Mn(III)(2)(5-MeOsaltmen)(2)M(II)(2)(L)(2)](CF(3)SO(3))(2) x 2H(2)O (MII = Cu, 1a; Ni, 2a), where 5-MeOsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene) bis(5-methoxysalicylideneiminate), and H(2)L = 3-{2-[(2-hydroxy-benzylidene)-amino]-2-methyl-propylimino}-butan-2-one oxime, have been synthesized and characterized from structural and magnetic points of view. These two compounds are isostructural and crystallize in the same monoclinic P2(1)/n space group. The structure has a [M(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-M(II)] skeleton, where -NO- is a linking oximato group derived from the non-symmetrical Schiff-base complex [M(II)(L)] and -(O)(2)- is a biphenolato bridge in the out-of-plane [Mn(2)(5-MeOsaltmen)(2)](2+) dimer. The solvent-free compounds, 1b and 2b, have also been prepared by drying of the parent compounds, 1a and 2a, respectively, at 100 degrees C under dried nitrogen. After this treatment, the crystallinity is preserved, and 1b and 2b crystallize in a monoclinic P2(1)/c space group without significant changes in their structures in comparison to 1a and 2a. Magnetic measurements on 1a and 1b revealed antiferromagnetic Mn(III)---Cu(II) interactions via the oximato group and weak ferromagnetic Mn(III)---Mn(III) interactions via the biphenolato bridge leading to an S(T) = 3 ground state. On the other hand, the diamagnetic nature of the square planar Ni(II) center generates an S(T) = 4 ground state for 2a and 2b. At low temperature, these solvated (a) and desolvated (b) compounds display single-molecule magnet behavior modulated by their spin ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号