首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The direct coupling of MEKC with MS can be hazardous due to the effect of nonvolatile MEKC surfactants on MS performance, including the loss of analyte sensitivity and ion source contamination. The possibility of off-line coupling between MEKC and matrix-assisted laser desorption/ionization (MALDI)-MS remains to be investigated. Various approaches for on-line coupling MEKC with electrospray ionization (ESI)-MS, including the use of high-molecular-mass surfactant, an electrospray-chemical ionization (ES-CI) interface, a voltage switching and buffer renewal system, partial-filling micellar plug and anodically migrating micelles, are reviewed and evaluated. The use of an ES-CI interface is most promising for routine operation of on-line MEKC-MS under the influence of nonvolatile salts and surfactants. The use of a high-molecular-mass surfactants allows the formation of a micellar phase at very low surfactant concentrations and avoids the generation of a high level of background ions in the low m/z region. Alternatively, the application of a partial-filling micellar plug and anodically migrating micelles eliminate the introduction of MEKC micelles into the ESI-MS system. It is possible to directly transfer the conventional MEKC separations to partial-filling MEKC-ESI-MS and MEKC-ESI-MS using anodically migrating micelles without any instrument modifications.  相似文献   

2.
Rapid, precise, accurate, and reproducible methodology using capillary electrophoresis (CE) with dynamically coated capillaries for the analysis of heroin and its basic impurities and adulterants is presented. Highly selective determination of the above solutes is obtained by analyzing the same sample preparation by two CE methods. For the determination of heroin, its basic impurities and basic adulterants, dynamic coating of the capillary surface is accomplished using a commercially available reagent kit with an added cyclodextrin ((CD) polycation coating followed by polyanion coating with dimethyl-beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin). The addition of a cyclodextrin to the run buffer significantly improves the separation of these solutes. Neutral, acidic, and weakly basic adulterants which migrate near or after t0 do not interfere with the more mobile basic solutes. The determination of neutral, acidic, and weakly basic adulterants in heroin is accomplished using a modification of the above commercially available reagent kit. After first coating with a polycation, a negative coating is obtained using a surfactant sodium dodecyl sulfate. Micellar electrokinetic chromatography (MEKC) with dynamically coated capillaries gives an excellent separation of the neutral, acidic, and weakly basic solutes, with considerably shorter run times compared to conventional MEKC. In addition for this system, most basic solutes in heroin have longer migration times than the uncharged and acidic compounds.  相似文献   

3.
A fast and easy method was sought for determination of the iridoid glycosides catalpol, ketologanin, verbenalin, loganin, 8-epi-loganic acid, geniposidic acid and 10-cinnamoyl catalpol in plant samples. The method involved micellar electrokinetic capillary chromatography (MEKC) coupled on-line to mass spectrometry. The partial filling technique and electrospray ionization were used. Seven iridoid glycosides could be separated with use of MEKC under basic conditions. However, 8-epi-loganic acid and geniposidic acid could not be detected simultaneously with the five neutral iridoid glycosides by mass spectrometry. Therefore, only the neutral iridoid glycosides were screened from plant samples. Catalpol, verbenalin, loganin and possibly 10-cinnamoyl catalpol were found in an examination of seven plant species in the genera Plantago, Veronica, Melampyrum, Succisa, and Valeriana. Aucubin, which was not included in the sample mixture used in method development because of overlapping with catalpol in MEKC, was also detected. The limits of detection for the iridoid glycosides, both at the UV and at the mass spectrometer, are given.  相似文献   

4.
In order to accomplish the analysis of peptides and proteins by capillary electrophoresis, Lupamin, a high-molecular-weight linear polyvinylamine (PVAm) polymer, was introduced to modify the inner wall of fused-silica capillaries by physical absorption. Thanks to the high density of positively charged amino groups in Lupamin under acidic conditions, not only is a strong reversed electroosmotic flow generated in the coated capillary but the adsorption of analytes on the inner wall of the capillary is also efficiently eliminated. It has been demonstrated that the Lupamin-coated capillary can be used to advantage for the rapid analysis of amino acids, peptides, and proteins with good resolution and peak shape by capillary electrophoresis. In order to evaluate the basic feature of a Lupamin-coated capillary, electroosmotic flows generated by a Lupamin coating layer under different conditions including pH, coating time, concentration, and the composition of electrolytes on Lupamin-coated and uncoated capillaries were investigated. Furthermore, electrospray ionization-mass spectrometry (ESI-MS) detection was carried out for the analysis of amino acids and peptides.  相似文献   

5.
The performance of capillaries coated with a poly(diallyldimethylammonium) (PDADMA) monolayer or poly(diallyldimethylammonium)-poly(styrenesulfonate) bilayer was investigated and compared under micellar electrokinetic chromatographic (MEKC) conditions. Both monolayer (positively charged) and bilayer (negatively charged) coatings with micellar (sodium dodecyl sulfate) electrolyte generated very stable and pH-independent cathodal electroosmotic flow (EOF). From the results obtained, it can be concluded that in a doubly coated capillary the second poly(styrenesulfonate) layer is replaced by sodium dodecyl sulfate micelles during flushing with micellar electrolyte. Consequently, in order to obtain a stable and pH-independent cathodal electroosmotic flow for the MEKC separations, the capillary coating with the second polyanion layer is not necessary. The importance of the PDADMA coating was illustrated by comparing MEKC separations of the common developing agents (hydroquinone, phenidone, pyrocatechol, pyrogallol and quinone) on a bare uncoated capillary with the coated capillary. The coating provides reproducible MEKC separations at low pH (pH 3.0) with relative standard deviation (R.S.D.) values for migration times and peak areas lower than 0.45 and 3.3%, respectively. Good linearities in the range from 5 x 10(-5) to 2 x 10(-3) mol l(-1) were obtained for all five compounds, with correlation coefficients higher than 0.998. The detection limits were in the range from 5 x 10(-6) mol l(-1) for pyrocatechol to 2 x 10(-5) mol l(-1) for quinone. The proposed MEKC system was applied to the determination of hydroquinone and phenidone in X-ray photographic developer solutions.  相似文献   

6.
Micellar electrokinetic chromatography (MEKC) was successfully coupled to Fourier transform infrared (FTIR) detection, using a micromachined IR-transparent flow cell with an optical path length of 15 micro m for the on-line detection of five neutral analytes. Tight connections between the flow cell and the capillaries were achieved by creating a small O-ring of UV-curing epoxy adhesive on the sharply cut capillary ends. The background electrolyte consisted of 15 mM phosphate buffer at pH 7 and 40 mM sodium dodecyl sulfate (SDS). Five analytes (paracetamol, caffeine, p-nitro benzyl alcohol, m-nitrophenol and p-nitrophenol) were successfully separated, yielding detailed IR stack plots that could be used for quantification and identification. Linear calibration graphs were obtained for each individual analyte present in mixtures at concentrations up to 10 mM. The limit of detection (3 S/N) ranged between 1.1 and 1.5 mM (1.2-1.8 ng). Analytes were identified by comparing spectra obtained during the MEKC separation with those resulting from completely filling the capillary with each individual analyte dissolved in the micelle-containing electrolyte. Information on the specific functional groups of all analytes could be elucidated from the spectra. Since FTIR is a nondestructive detection technique, a conventional on-line UV detector was introduced directly after the developed IR flow cell to test the system's performance and to demonstrate that tandem FTIR and UV detection is feasible.  相似文献   

7.
An application study of an on-line concentration technique of neutral analytes for micellar electrokinetic chromatography (MEKC) was carried out in environmental analysis to enhance the UV detection sensitivity. Several dioxins and related compounds, such as dibenzofuran, dibenzo-p-dioxin, 2,3- and 2,7-dichlorodibenzo-p-dioxins, and 2,3,7-trichlorodibenzo-p-dioxin, were used as test solutes. For a highly sensitive separation and detection, cyclodextrin-modified MEKC (CD-MEKC) under acidic conditions was employed as a separation mode and stacking using reverse migrating micelles and a water plug (SRW) as an on-line concentration technique. Almost a 200-fold gain in detection sensitivity was obtained for the model compounds in SRW-CD-MEKC compared to that in normal CD-MEKC without on-line concentration and the limit of detection was found to be around 0.1 ppm for each solute.  相似文献   

8.
The performance of dopant-assisted atmospheric pressure photoionization (DA-APPI) and electrospray ionization (ESI) for the coupling of micellar electrokinetic chromatography (MEKC) with ion trap mass spectrometry (ITMS) was compared using a set of test drugs comprising basic amines, steroids, esters, phenones and a quaternary ammonium compound. The influence of the surfactant sodium dodecyl sulfate (SDS) on analyte signals was studied by infusion of sample through the CE capillary into the respective ion sources. It was found that background electrolytes (BGEs) containing 20-50mM SDS in 10mM sodium phosphate (pH 7.5) caused major ionization suppression for both polar and apolar compounds in ESI-MS, whereas APPI-MS signal intensities remained largely unaffected. ESI gave rise to the formation of SDS clusters, which occasionally may cause space-charge effects in the ion trap. Furthermore, extensive sodium-adduct formation was observed for medium polar compounds with ESI-MS, whereas these compounds were detected as their protonated molecules with APPI-MS. Using the BGE containing 20mM SDS, MEKC-ESI-MS still provides slightly lower limits of detection (LODs) (2.6-3.1muM) than MEKC-APPI-MS (4.3-6.4muM) for basic amines. For less polar compounds, highest S/Ns were obtained with APPI-MS detection (LODs, 4.5-71muM). For BGEs containing 50mM SDS, the limits of detection for MEKC-APPI-MS were more favorable (factor 1.5-12) than MEKC-ESI-MS for nearly all tested drugs. Spray shield contamination by SDS was lower in DA-APPI-MS than in ESI-MS. It is concluded that DA-APPI shows the most favorable characteristics for MEKC-MS, especially when compounds of low polarity have to be analyzed.  相似文献   

9.
Magnusson J  Wan H  Blomberg LG 《Electrophoresis》2002,23(17):3013-3019
Determination of enantiomeric purity is most often done under overload conditions, which leads to deformed peaks. In general, the best resolutions are obtained when the small peak appears before the large peak in the electropherogram. To be able to determine the R(+)-impurity in the S(-)-form as well as the S(-)-impurity in the R(+)-form the elution orders have to be reversed. The present paper describes reversal of enantiomeric elution order for the basic analyte propranolol and the acidic analyte ibuprofen. For propranolol, a charged heptakis-(6-sulfo)-beta-cyclodextrin (CD) is used in the background electrolyte. For ibuprofen, a mix of the charged heptakis-(6-sulfo)-beta-CD and the uncharged heptakis-(2,3,6-tri-O-methyl)-beta-CD is used in the background electrolyte. The use of a coated capillary and reversal of the polarity shift the elution order, buffer composition is unchanged in both cases. The enantiomers of propranolol and ibuprofen are well separated on both the coated and uncoated capillaries. Detection limits of enantiomer impurities are investigated using spiked samples of both propranolol and ibuprofen.  相似文献   

10.
An on-line method for the coupling of micellar electrokinetic chromatography (MEKC) and mass spectrometry (MS) is presented which allows conventional MEKC conditions to be employed without further modification. The MEKC system is coupled directly to electrospray ionization (ESI) MS using a triaxial interface. A systematic study of the influence of the surfactant concentration, the nature and concentration of buffer salts and presence of organic modifier on the interface performance indicated the feasibility of the MEKC–MS approach. Effective interfacing of MEKC was achieved with both single quadrupole and ion-trap MS instruments. Using a background electrolyte containing 20 mM sodium dodecyl sulfate (SDS) and 10 mM sodium phosphate buffer, it is demonstrated that full MEKC runs of test mixtures of mebeverine and related compounds can be monitored by ESI-MS with satisfactory sensitivity. Sub-μg/ml levels of the analytes can still be detected in full scan mode, while detection limits are in the 10–50 ng/ml range when selected ion monitoring is applied. It is shown that such sensitivity would allow full-scan MS detection of 0.1% (w/w) levels of potential impurities in mebeverine. With the ion-trap instrument successful MEKC–MS/MS experiments were carried out providing information-rich MS spectra of the related compounds. Repeated MEKC–MS analyses proved that in the course of 1 day the migration time of mebeverine remained fairly constant while the MS-signal intensity only gradually decreased to approximately 65% of its original value. Once-a-day cleaning of the first part of the ion source, which takes only 5 min, suffices to preserve an optimal interface performance for a prolonged period of time.  相似文献   

11.
Riaz A  Chung DS 《Electrophoresis》2005,26(3):668-673
Transient isotachophoresis (TITP) is usually performed under low-electroosmotic flow (EOF) conditions using a coated capillary or a low pH background electrolyte. We used a bare fused-silica capillary for TITP stacking of anionic complexes of some heavy metals under high-EOF conditions (pH 9.0). The sample component chloride as a leading electrolyte induced stacking by an isotachophoretic mechanism and the complexing agent 4-(2-pyridylazo) resorcinol (PAR) acted as a terminating electrolyte. The optimized background electrolyte was composed of 150 mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid, 127 mM triethylamine, and 0.1 mM PAR at pH 9.0. The strong EOF at pH 9.0 pulled the analytes against their mobilities toward the outlet side, allowing a separation in the normal polarity mode. The stacking efficiency, reproducibility, analysis time, and sample loading capacity in coated and bare capillaries were compared. The stacking efficiency and reproducibility were higher and the analysis time was shorter in the coated capillary. However, a larger volume of a sample could be injected in the bare capillary to achieve detection limits comparable to those for the coated one without compromising the resolution between the analyte peaks. The limits of detection (S/N = 3) were in the sub-ppb range for the selected metals (Fe2+, 0.3 ppb; Ni2+, 0.16 ppb; and Zn2+, 0.8 ppb) in a standard saline sample with 250 mM NaCl matrix. The proposed method was successfully applied to the analysis of reference urine samples and human urine samples.  相似文献   

12.
The feasibility of using C1-C5 alcohols as electrolyte solutions in nonaqueous capillary zone electrophoresis was investigated. The separation of basic narcotic analgesics and acidic diuretics was modified by changing the alcohol in an electrolyte solution containing alcohol-acetonitrile-acetic acid (50:49:1, v/v) and 20 mM ammonium acetate while other experimental conditions were kept constant. The alcohols studied were methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol. The results indicate that even longer-chain alcohols can be used in nonaqueous capillary zone electrophoresis and, because of the lower currents they allow, they are especially advantageous in wider capillaries. Basic analytes were separated in 200 microm and 320 microm ID capillaries with 1-butanol-acetonitrile-acetic acid (50:49:1, v/v) containing 20 mM ammonium acetate as electrolyte solution. Problems related to the use of wide-bore capillaries are discussed.  相似文献   

13.
Wang C  Li C  Zang X  Han D  Liu Z  Wang Z 《Journal of chromatography. A》2007,1143(1-2):270-275
A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextraction (LPME) based on porous polypropylene hollow fibers combined with on-line sweeping in micellar electrokinetic chromatography (MEKC) was developed. Strychnos alkaloids were first extracted from urine sample which was adjusted to alkaline conditions (0.5 mol l(-1) NaOH). The unionized analytes were subsequently extracted into 1-octanol impregnated in the pores of hollow fibers, and then into an acidic acceptor solution (100 mmol l(-1) H3PO4) inside the hollow fiber. The extract was analyzed directly by on-line sweeping in MEKC. In the method, the compound berberine was used as the internal standard (I.S.) for the improvement of the experimental reproducibility. The calibration curve was linear over a range of 20-200 ng ml(-1) for both strychnine and brucine in human urine sample, with a correlation coefficient of 0.996 and 0.997, respectively. The detection limits (S/N=3:1) for strychnine and brucine were 1 and 2 ng ml(-1), respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine sample, indicating that LPME-sweeping-MEKC is a promising combination for analysis of basic drugs present at low levels in some biological matrices.  相似文献   

14.
We have investigated a rapid, simple, and highly efficient on-line preconcentration method using in micellar electrokinetic chromatography (MEKC) for the analysis of abused drugs. Ketamine is an anesthetic that has been abused as a hallucinogen. We applied the sample sweeping technique first to ketamine and its major metabolite, norketamine, and separated the analytes with MEKC. Several of the sweeping MEKC parameters to effect successful separations, such as the concentration of sodium dodecyl sulfate (SDS), the injection time, and the applied voltage were optimized. The improvements in the number of theoretical plates under the different separation conditions are presented clearly in a three-dimensional representation. The limits of detection were 2.8, 3.4, and 3.3 ng/mL for ketamine, norketamine, and ketamine-D(4), respectively. The enrichment factor for each compound was within the range of 540-800. Experimental results are in agreement with those of analysis conducted by gas chromatography/mass spectroscopy (GC/MS). Therefore, we believe that sweeping, combined with MEKC, represents a suitable complementary method to GC/MS for use in clinical and forensic analyses of ketamine and norketamine.  相似文献   

15.
Molina M  Silva M 《Electrophoresis》2002,23(22-23):3907-3921
This review highlights recent methodological and instrumental advances in micellar electrokinetic chromatography (MEKC). Enhancements in sensitivity and selectivity of the technique through the use of on-line preconcentration approaches (stacking and sweeping) and nonconventional pseudostationary phases, namely nonionic and zwitterionic surfactants, mixed micelles and polymers, are discussed in detail. Laser-induced fluorescence and mass spectrometry, as alternatives to UV-absorption detection, have been covered to evaluate their advantages and limitations when applied to analysis in an MEKC format. Some thoughts on future directions in this area such as in-capillary reactions, coated capillaries and MEKC on microchips are also presented.  相似文献   

16.
Optimum conditions for the determination of the herbicides paraquat, diquat and difenzoquat by micellar electrokinetic chromatography (MEKC) using sweeping and cation-selective exhaustive injection (CSEI) as on-line concentration methods were developed. Sodium dodecyl sulfate (80 mM) in 50 mM phosphate buffer (pH 2.5) with 20% acetonitrile was used as a background electrolyte for the methods studied. The limits of detection, based on a signal-to-noise ratio of 3:1, were about 2.6-5.1 mg 1(-1) in purified water when MEKC was applied for the standards. By using an on-line preconcentration method known as sweeping-MEKC, up to a 500-fold increase in detection sensitivity was obtained whereas up to a 50 000-fold increase for CSEI-sweeping-MEKC was achieved. The limits of detection using optimum CSEI-sweeping-MEKC were lower than 1 microg 1(-1) and the method was validated obtaining good reproducibility (relative standard deviation lower than 22%) and linearity. CSEI-sweeping-MEKC was successfully applied to the determination of the three herbicides in spiked tap water below the levels established by the US Environmental Protection Agency.  相似文献   

17.
Changes in MEKC chemical selectivity that are induced by changes in the headgroup structure of cationic surfactants are examined. Separations of acidic, basic, and hydrophobic solutes are examined. The acidic analytes are comprised of methoxyphenols, which are of interest due to their prevalence in wood smoke. The basic solutes consist of compounds often found in forensic urine analysis, and represent typical basic pharmaceuticals. The hydrophobic solutes are six pharmaceutical corticosteroids used in replacement therapy of adrenocortical insufficiency and nonspecific treatment of inflammatory and allergic conditions. The role of the headgroup was found to be quite significant when analyzing acidic compounds with not all the surfactants being able to resolve all of the analytes. The headgroup also induced migration order switches among the acidic analytes. All of the surfactants examined here in were found to be suitable for the analysis of basic analytes with each surfactant providing unique selectivity. The hydrophobic solutes were separated best with the larger more hydrophobic surfactant headgroups. The steroid separation with these two surfactants was achieved without the use of organic modifiers or a mixed micellar phase.  相似文献   

18.
Kuldvee R  Thormann W 《Electrophoresis》2001,22(7):1345-1355
Therapeutic drug monitoring of carbamazepine (CBZ), a widely used antiepileptic drug, is required for optimization of pharmacotherapy with this drug and for assessment of the patient's compliance to therapy. The suitability of employing micellar electrokinetic capillary chromatography (MEKC) in the absence of electroosmosis for the determination of CBZ and its main metabolite carbamazepine-10,11-epoxide (CBZE) in extracts of human serum and plasma is reported. Using micelles formed by dodecyl sulfate, analyses performed in untreated fused-silica capillaries at acidic pH and in commercially available coated capillaries under application of reversed polarity are compared. Uncoated and polyvinyl alcohol coated capillaries proved to be unsuitable for this purpose, whereas capillaries coated with linear polyacrylamide and N-acryloylaminoethoxyethanol and operated at pH 7.6 are shown to provide high-quality and reliable data on a short time scale. Assay performance is discussed via statistical analysis of the data produced from a set of quality control sera that contain up to 14 different drugs and via analysis of patient samples. Intraday and interday imprecision data for concentrations between 4.0 and 84 microM are demonstrated to be < 10%. Run times are shown to be < 50% compared to those observed in conventional MEKC at alkaline pH (i.e., in the presence of electroosmosis).  相似文献   

19.
20.
A method based on micellar electrokinetic chromatography (MEKC) with UV detection has been developed for the determination of nine 5-nitroimidazoles (5-NDZs), including metabolites in river water samples. Due to the relative insensitivity of UV detection in MEKC, a solid-phase extraction (SPE) method has been proposed that preconcentrates water samples fiftyfold and cleans them up off-line. An on-line preconcentration approach based on sweeping and the use of an extended light path fused-silica capillary (64.5?cm?×?50?μm i.d., 56?cm effective length) was also found to improve the sensitivity of the method. Separation was carried out in <21?min using 20?mM phosphate buffer (pH 6.5) and 150?mM SDS as the background electrolyte (BGE). The temperature of the capillary was kept constant at 20°C, a voltage of 25?kV was applied (normal mode), and a detected wavelength of 320?nm was utilized. Hydrodynamic injection (50?mbar for 15?s) of the samples, which were dissolved in 20?mM phosphate (pH 6.5), was employed. The limits of detection were lower than 1.1?μg?L(-1). Recoveries of >80% from spiked river water samples were obtained for most of the analytes at three different concentration levels with acceptable precision. This method could provide an efficient and economical alternative to the use of chromatographic methods to monitor nitroimidazole residues, thus supplementing the relatively few methods available for the analysis of these compounds in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号