首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel ligand: 4,4′-bis(8-hydroxyquinoline-5-propenyl)-biphenyl (B8QPB) (1), has been synthesized by Witting-Horner reaction, and the corresponding two polymeric metal complexes were also prepared by polynuclear of the ligand with aluminium (III) (2) and zinc (II) (3) halides, respectively. The structure of the ligand was characterized by 1H NMR, FT-IR and elemental analysis techniques; polymeric metal complexes were characterized by FT-IR, UV-vis, elemental analysis techniques, conductivity measurements and gel permeation chromatography (GPC). The results indicate that the stoichiometry of polymeric metal complexes is [(C34H24O2N2)11Al12Cl28] and [(C34H24O2N2)32(ZnCl2)33]. B8QPB coordinated with metal ions to form polymers. The luminescence properties of the complexes 1-3 were investigated by UV-vis and fluorescence spectra at room temperature. The experimental results show that polymeric metal complexes 2 and 3 emit blue/green luminescence at 514 and 504 nm in the solid state and at 470 and 507 nm in DMSO solution. Thermal properties measurement and analysis show that they have good thermal stabilities.  相似文献   

2.
To contribute to the development of single-component molecular metals, several nickel complexes with cyclohexeno-condensed or ethylenedioxy-substituted TTF (tetrathiafulvalene) dithiolate ligands, (R(4)N)(n)[Ni(chdt)(2)] [R = Me, n = 2 (1); R = (n)Bu, n = 1 (2); n = 0 (3)] and (R(4)N)(n)[Ni(eodt)(2)] [R = Me, n = 2 (4); R = (n)Bu, n = 1 (5); n = 0 (6)], were prepared. X-ray structures were determined on the monoanionic species 2 and 5. The tetra-n-butylammonium complex of the monoanionic [Ni(chdt)(2)] (2) with a 1:1 composition revealed that its magnetic susceptibility gave a good agreement with the Bonner-Fisher model (J/k(B) = -28 K), which was derived from the one-dimensional chains of anions with a regular interval. On the other hand, the magnetic susceptibility of the tetra-n-butylammonium complex of the monoanionic [Ni(eodt)(2)] (5) showed the Curie-Weiss behavior (C = 0.376 K.emu.mol(-1) and Theta = -4.6 K). Both of the monoanionic species 2 and 5 indicate that they belong to the S = 1/2 magnetic system and have relatively large and anisotropic g-values, suggesting the contribution of the nickel 3d orbital. Electrical resistivity measurements were performed on the compressed pellets of the neutral species 3 and 6. Fairly large conductivities were obtained (sigma(rt) = 1-10 S.cm(-1)). In addition, despite the measurements on the compressed pellets of powder samples, the neutral species 6 showed metallic behavior down to ca. 120 K and retained high conductivity even at 0.6 K [sigma(0.6 K)/sigma(rt) approximately 1/30], suggesting the crystal to be essentially metallic down to very low temperature. The electrical behavior and Pauli paramagnetism of 6 indicate the system to be a new single-component metal.  相似文献   

3.
A series of cationic Rh(I) carbonyl complexes of the form [Rh(CO)(L)]PF6 (where L = 2,6-bis (alkylimidazol-2-ylidene)-pyridine; alkyl = Me (1a), Et (1b), CH2Ph (1c)) have been prepared by the reactions of [Rh(CO)2(OAc)]2 with diimidazolium pyridine salts in the presence of NEt3. The ν(CO) values for 1 are ca. 1982 cm−1, indicating that the N-heterocyclic carbene ligands impart high electron density on the Rh(I) centres, despite the overall cationic charge. Each of the Rh(I) complexes reacts with MeI to form two isomeric Rh(III) methyl species, and a third unidentified species. Kinetic measurements on the MeI oxidative addition reactions give second-order rate constants (MeCN, 25 °C) of 0.0927, 0.0633 and 0.0277 M−1 s−1 for 1a, 1b and 1c, respectively. Comparison of these data with those for related Rh(I) carbonyl complexes shows that 1 have remarkably high nucleophilicity for cationic species.  相似文献   

4.
5.
6.
Data on ethylene polymerization on homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl Fe(II) complexes activated by trialkylaluminums are considered (activity, the molecular-weight characteristics of polymers, the number of active sites, and the propagation rate constants). Unlike homogeneous systems, the supported catalysts prepared with the use of various carriers (SiO2, Al2O3, and MgCl2) exhibited high stability and activity at 70–80°C and produced high-molecular-weight polyethylene with a broad molecular-weight distribution (MWD). The molecular weights and MWDs of polymers and the propagation rate constant depended on the nature of the carrier only slightly. The reasons for an unusual effect of an increase in the activity of the supported catalysts in ethylene polymerization in the presence of hydrogen are discussed.  相似文献   

7.
The synthetic route towards a novel tetradentate ligand bearing two amido and imidazole rings is reported. This ligand has been designed to study the relationship between the protonic state of the ligand through the imidazole moieties towards the electronic behaviour of metal complexes.  相似文献   

8.
Eight kinds of imidazolate-bridged copper(II) complexes were found to be classified into two categories from the magnetic properties. The crystal structures of [Cu(L)(μ-im)]n (Him = imidazole; L = nonane-4,6-dionate, 2,6-dimethylheptane-3,5-dionate) and [Cu(L)(μ-im)]4 (L = nonane-4,6-dionate, 1-phenylbutane-1,3-dionate) were determined, to reveal that they consist of polymeric chains and tetranuclear cycles, respectively. Note that the nonane-4,6-dionate derivative gave the two phases. The Bonner–Fisher model (a one-dimensional antiferromagnetic chain model) was plausibly applied to [Cu(L)(μ-im)]n for the best fit, while a square model was to [Cu(L)(μ-im)]4. The complexes with unknown crystal structures were also subjected to magnetic measurements, and the tetra- and polymeric structures could be clearly distinguished from each other by fitting the magnetic data to appropriate models. The exchange parameters were comparable for both series (2J/kB = ?78 to ?97 K) because the structurally common bridges Cu–N(eq)–N(eq)–Cu afford comparable magnitudes of couplings.  相似文献   

9.
The paper presents a review of the state of the art and prospects for the development of rotary molecular switches based on transition metal bis(dicarbollide) complexes.  相似文献   

10.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

11.
Two new dinuclear Ru(III) complexes containing naphthalene moieties, K[Ru2(dhpta)(mu-O2CCH2-1-naph)2] (1) and K[Ru2(dhpta)(mu-O2CCH2-2-naph)2] (2) (H5dhpta = 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid, naph-1-CH2CO2H = 1-naphthylacetic acid, naph-2-CH2CO2H = 2-naphthylacetic acid), were synthesized. Complex 2 crystallized as an orthorhombic system having a space group of Pbca with unit cell parameters a = 10.6200(5) A, b = 20.270(1) A, c = 35.530(2) A, and Z = 8. EXAFS analysis of 1 and 2 in the solid states and in solution clarified that the dinuclear structures of 1 and 2 were kept in DMSO solutions. Variable-temperature magnetic susceptibility data indicated that the two Ru(III) centers are strongly antiferromagnetically coupled as shown by the large coupling constants, J = -581 cm(-1) (1) and -378 cm(-1) (2). In the cyclic voltammograms of 1 and 2, one oxidation peak and two reduction peaks which were assigned to the redox reaction of the ruthenium moieties were observed in DMF. The large conproportionation constants estimated from the reduction potentials of Ru(III)Ru(III) and Ru(III)Ru(II) indicated the great stability of the mixed-valent state. The mixed-valent species [Ru(III)Ru(II)(dhpta)(mu-O2CCH2-R)2](2-) (R = 1-naph (6) and R = 2-naph (7)) were prepared by controlled potential electrolysis of 1 and 2 in DMF. The electronic absorption spectra of 6 and 7 were similar to that of [Ru(III)Ru(II) (dhpta)(mu-O2CCH3)2](2-) which is a typical Class II type mixed-valent complex. The fluorescence decay of 1 and 2 indicated that there are two quenching processes which come from the excimer and monomer states. The short excimer lifetimes of 1 and 2 were ascribed to the energy transfer from the naphthyl moieties to the Ru centers. The different excimer ratio between 1 and 2 suggested that the excimer formation is affected by the conformation of the naphthyl moieties in the diruthenium(III) complexes.  相似文献   

12.
Five picolinato zinc(II) and cadmium(II) complexes, [Zn(ntb)(pic)]ClO4·CH3OH·2H2O (1), [Zn(bbma)(pic)]NO3·2CH3OH (2), [Cd(ntb)(pic)]ClO4·0.75CH3OH·H2O (3), [Cd2(bbma)2(pic)2](ClO4)2 (4), and [Cd2(bbp)(bbp-H)(pic)2(C2H5OH)]ClO4 (5), have been synthesized, where pic is the anion of picolinic acid, ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine, and bbp is 2,6-bis(benzimidazol-2-yl)pyridine. All the complexes were characterized by X-ray single-crystal diffraction, elemental analysis, IR, fluorescence spectroscopy, and thermal gravimetric analysis. 13 are mononuclear complexes in which picolinate adopts a N,O-chelating mode. 4 is a symmetrical dinuclear complex bridged by two anti-parallel picolinates in a N,O,O-coordination mode. 5 is also a dinuclear complex in which only one picolinate is a bridge. A 1-D double chain is formed by extensive H-bonds and ππ stacking in 1, while single zigzag chains are formed in 5. Complexes 24 all exhibit 63-hcb 2-D frameworks. They extend to form four-connected 66-dia 3-D topological nets for 2 and 4 and five-connected 46·64-bnn 3-D topological nets for 3. The five complexes show emission maxima in the blue region in the solid state.  相似文献   

13.
The (C5H4-XMe2-C5H4) · (TiCl3)2 binuclear complexes, where X = Si (1) or C (2), have been studied by X-ray structural analysis. In both structures, the coordination polyhedra about the Ti atoms are distorted tetrahedra formed by three CI atoms and one Cp ring. The conformations of molecules1 and2 and the possibility of the occurrence of secondary Ti-Cp...Cl-Ti interaction are discussedTranslated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2269–2271, September. 1996.  相似文献   

14.
The reaction of silver(I) with 1,2-bis[1-(pyridin-2-yl)ethylidene]hydrazine (bpeh) and N,N-bis(pyridin-2-ylmethyl)amine (bpma) in the presence of Na(sac) (sac = saccharinate) yielded [Ag2(sac)2(bpeh)] (1) and [Ag(sac)(bpma)]n (2) with conformational chirality. Both complexes have been characterized by elemental analysis, IR, thermal analysis and X-ray single crystal diffraction. Complex 1 displays a binuclear composition, in which each silver(I) ion is bound to one monodentate sac ligand and one of the bidentate pyridylimino groups of the bpeh ligand in a distorted trigonal coordination geometry. Complex 2 is a one-dimensional helical polymer, in which silver(I) centers are bridged by tridentate bpma ligands, and each silver(I) ion is coordinated in a distorted tetrahedral geometry by one monodentate sac ligand, a bidentate pyridylamine group of one bpma ligand, and a py group of another bpma ligand. Weak intermolecular C–H?O hydrogen bonds and C–H?π interactions lead to assembly of 1 and 2 into three-dimensional supramolecular frameworks. Spectral and thermal analysis data for 1 and 2 are in agreement with the crystal structures. In addition, both complexes in the solid state display intraligand π–π∗ fluorescence.  相似文献   

15.
Gaussian analysis of the electronic spectra of 25 bis(dimethylglyoximato)iron(II) complexes containing axialN-heterocyclic ligands are discussed and comparisons made with the spectra of the corresponding [Fe(CN)5L]3– complexes. The energies of the metal-to-axial and metal-to-equatorial ligand charge-transfer transitions exhibit opposite trends, correlating with the electronic properties of the axial ligands, and with the redox potentials of the FeII/FeIII couple.  相似文献   

16.
《Mendeleev Communications》2020,30(3):302-304
  1. Download : Download high-res image (92KB)
  2. Download : Download full-size image
  相似文献   

17.
Zhang Z  Dolphin D 《Inorganic chemistry》2010,49(24):11550-11555
The reaction of an α-free, β,β'-linked bis(dipyrromethene) ligand with Fe(3+) or Co(3+) led to noninterconvertible triple-stranded helicates and mesocates. In the present context, a stable α-free ligand 2 has been developed and complexation of ligands 1 and 2 with diamagnetic Co(3+), Ga(3+), and In(3+) has been studied. The triple-stranded M(2)1(3) (M = Ga, In) and M(2)2(3) (M = Co, Ga, In) complexes were characterized using matrix-assisted laser desorption ionization time-of-flight spectrometry, (1)H NMR and UV-vis spectroscopy, and X-ray crystallography. Again, the (1)H NMR analysis showed that both the triple-stranded helicates and mesocates were generated in this metal-directed assembly. Consistent with our previous finding on coordinatively inert Co(3+) complexes, variable-temperature NMR spectroscopy indicated that the triple-stranded helicate and mesocate of labile In(3+) did not interconvert in solution, either. However, the diastereoselectivity of the M(2)2(3) complexes was found to improve with an increase in the reaction temperature. Taken together, this study complements the coordination chemistry of poly(dipyrromethene) ligands and provides further insight into the formation of helicates versus mesocates.  相似文献   

18.
19.
Ugrinova V  Noll BC  Brown SN 《Inorganic chemistry》2006,45(25):10309-10320
Novel bis(beta-diketones) linked by 2,2'-biphenyldiyl, 2,2'-tolandiyl, and 2,2'-bis(methylene)biphenyl moieties have been prepared. All are metalated readily by titanium(IV) isopropoxide, but the nature of the complexes formed depends on the linker structure. The biphenyl-bridged ligand gives only traces of a mononuclear complex, which is thermodynamically unstable with respect to oligomerization. The tolan-bridged ligand does form mononuclear complexes, but only as a mixture of geometric isomers. In contrast, the substituted 2,2'-bis-(2,4-dioxobutyl)biphenyl ligands, R2BobH2 (R = tBu, p-Tol), react with Ti(OiPr)4 to give, initially, a mixture of monomer and oligomers, which is converted quantitatively to monomer upon heating in the presence of excess Ti(OiPr)4. Only a single relative configuration of the biphenyl and bis(chelate) titanium moieties, established by crystallography of (tBu2Bob)Ti(O-2,6-iPr2C6H3)2 to be the (R)-/(S)- diastereomer, is observed. The kinetic and thermodynamic robustness of the (R2Bob)Ti framework is confirmed by reactions with Lewis acids. For example, (Tol2Bob)Ti(OiPr)2 reacts with trimethylsilyl triflate or triflic acid to substitute one or both of the isopropoxide groups with triflates without any redistribution or loss of the diketonate ligands. Cationic complexes can be prepared by abstraction of triflate from (Tol2Bob)Ti(OiPr)(OTf) with Na[B(C6H3(CF3)2)4]. For example, in the presence of diethyl ether, the crystallographically characterized [(Tol2Bob)Ti(OiPr)(OEt2)][B(C6H3(CF3)2)4], containing a rapidly dissociating ether ligand, is formed.  相似文献   

20.
The aim of this paper is to introduce a synthetic concept suitable for the preparation of a broad variety of compounds. The so-called anhydride route (in this article the term anhydride is used for compounds derived from corresponding acids by formal loss of H2O, H2S and H2Se) has so far led to a range of unusual Group 15/16 ligands in oligomeric and polymeric environments. Commonly, reactions of neutral precursor molecules, for example, [{RP(S)(mu-S)}2] (R=4-anisyl) Lawesson's reagent or [{PhP(Se)(mu-Se)}2] Woollins's reagent and metal salts are performed to result in novel coordination compounds in which ligands and metal atoms form coordination oligomers and polymers. An attempt is made to relate the outcome of the investigations to the type of metal used. By relating the strength of ionic interactions, which correspond to metal-donor distances, to phenomena observed in the solid-state structures, an aspect of supraionic chemistry is described. Chemistry of and beyond novel Group 15/16 anions is further discussed using a novel approach in coordination chemistry where the chemical nature of ligands is unknown prior to the experiment despite the use of a range of similar starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号