首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion processes.Combined atomic force microscopy(AFM) and laser scanning confocal microscopy(LSCM) was utilized to measure single cell mechanics,in correlation with cellular morphology and membrane structures at a nanometer scale.Characteristic stages of focal adhesion were verified via confocal fluorescent studies,which confirmed three representative F-actin assemblies,actin dot,filaments network,and long and aligned fibrous bundles at cytoskeleton.Force-deformation profiles of living cells were measured at the single cell level,and displayed as a function of height deformation,relative height deformation and relative volume deformation.As focal adhesion progresses,single cell compression profiles indicate that both membrane and cytoskeleton stiffen,while spreading increases especially from focal complex to focal adhesion.Correspondingly,AFM imaging reveals morphological geometries of spherical cap,spreading with polygon boundaries,and elongated or polarized spreading.Membrane features are dominated by protrusions of 41-207 nm tall,short rods with 1-6 μm in length and 10.2-80.0 nm in height,and long fibrous features of 31-246 nm tall,respectively.The protrusion is attributed to local membrane folding,and the rod and fibrous features are consistent with bilayer decorating over the F-actin assemblies.Taken collectively,the reassembly of F-actin during focal adhesion formation is most likely responsible for the changes in cellular mechanics,spreading morphology,and membrane structural features.  相似文献   

2.
Ramadan Q  Gijs MA 《The Analyst》2011,136(6):1157-1166
Simultaneous washing and concentration of functionalized magnetic beads in a complex sample solution were demonstrated by applying a rotational magnetic actuation system to a microfluidic chip under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to the fluidic channel carrying a magnetic bead suspension allows trapping and releasing of the beads along the fluidic channel in a periodical manner. Each trapping and releasing event resembles one washing cycle. A purification efficiency of magnetic beads out of a mixed magnetic and non-magnetic bead sample solution of 83±4% at a flow rate of 0.5 μL min(-1), and a magnetic bead recovery or concentration efficiency of 91±5% were achieved using a flow rate of 0.2 μL min(-1). The detection performance of the device was experimentally evaluated with two different bioassays, using either streptavidin-coated magnetic beads in combination with biotinylated fluorescent isothiocyanate (FITC), or a mouse antigen (Ag)-antibody (Ab) system.  相似文献   

3.
The aim of the last part of this general study is to analyze the influence of the interfacial properties and, more precisely, the adhesion energy, between carbon fibers and PEEK on the final performance of unidirectional composites. A set of mechanical properties, i.e. interlaminar shear strength, longitudinal tensile and compressive and transverse tensile properties, of different unidirectional laminates with the same content (60% by volume) of carbon fibers is determined. It is first shown that the interlaminar shear strength is constant, whatever the type of materials. Therefore, this test is not appropriate to characterize the strength of the fiber–matrix interface in PEEK-based composites. On the contrary, in agreement with previous work on other systems, it appears that the ultimate properties (longitudinal tensile and compressive as well as transverse tensile strengths and strains) of the laminates increase with the interfacial adhesion energy, whereas the stiffness of these composites remains unaffected in all cases.  相似文献   

4.
Chen J  Zheng Y  Tan Q  Shojaei-Baghini E  Zhang YL  Li J  Prasad P  You L  Wu XY  Sun Y 《Lab on a chip》2011,11(18):3174-3181
This paper presents a microfluidic system for cell type classification using mechanical and electrical measurements on single cells. Cells are aspirated continuously through a constriction channel with cell elongations and impedance profiles measured simultaneously. The cell transit time through the constriction channel and the impedance amplitude ratio are quantified as cell's mechanical and electrical property indicators. The microfluidic device and measurement system were used to characterize osteoblasts (n=206) and osteocytes (n=217), revealing that osteoblasts, compared with osteocytes, have a larger cell elongation length (64.51 ± 14.98 μm vs. 39.78 ± 7.16 μm), a longer transit time (1.84 ± 1.48 s vs. 0.94 ± 1.07 s), and a higher impedance amplitude ratio (1.198 ± 0.071 vs. 1.099 ± 0.038). Pattern recognition using the neural network was applied to cell type classification, resulting in classification success rates of 69.8% (transit time alone), 85.3% (impedance amplitude ratio alone), and 93.7% (both transit time and impedance amplitude ratio as input to neural network) for osteoblasts and osteocytes. The system was also applied to test EMT6 (n=747) and EMT6/AR1.0 cells (n=770, EMT6 treated by doxorubicin) that have a comparable size distribution (cell elongation length: 51.47 ± 11.33 μm vs. 50.09 ± 9.70 μm). The effects of cell size on transit time and impedance amplitude ratio were investigated. Cell classification success rates were 51.3% (cell elongation alone), 57.5% (transit time alone), 59.6% (impedance amplitude ratio alone), and 70.2% (both transit time and impedance amplitude ratio). These preliminary results suggest that biomechanical and bioelectrical parameters, when used in combination, could provide a higher cell classification success rate than using electrical or mechanical parameter alone.  相似文献   

5.
采用原子力显微镜在纳米尺度下对正常中性粒细胞与白血病细胞株K562细胞的表面形貌及细胞的硬度、粘附力进行定性定量分析.结果表明,相比正常中性粒细胞的平均粗糙度(Ra=5.31±1.52 nm),K562细胞的超微结构更为复杂,细胞表面平均粗糙度显著升高(Ra=26.54±8.01 nm).此外,细胞的生物机械特性也有显著差别:中性粒细胞的硬度为9.5±1.3 kPa,AFM针尖与中性粒细胞的非特异性粘附力为135±23.4 pN;K562细胞的硬度为3.0±0.8 kPa,AFM针尖与K562细胞的非特异性粘附力为95±15.6 pN.AFM在单细胞水平上的探测表明,中性粒细胞和K562细胞的超微结构和机械特性均有明显差异.通过对细胞表面超微结构和力学特性的探测可以诊断慢性粒细胞白血病,原子力显微镜有望成为临床肿瘤诊断的工具.  相似文献   

6.
We report a method to selectively label phosphorylated, membrane proteins with microscopic particles. This technology is particularly useful in single particle studies. In such studies, the particles may serve to visualize protein diffusion and/or as 'handles' to study the force of interaction between the labeled protein and the membrane matrix. In the latter kind of experiments, forces can be applied and measured by calibrated optical tweezers. Optical tweezers were used in this work to test the strength of the particle labeling. Labeling a single protein with a particle produces a long-lived, distinct tag and is particularly useful for proteins in photosynthetic membranes, which contain endogenous fluorophores that would render single fluorescent proteins difficult to detect.  相似文献   

7.
《Chemphyschem》2003,4(7):699-704
This paper deals with single‐step, orientation‐selective immobilization of human erythrocyte membranes on bare silica beads with different topographies: 1) solid (nonporous) silica beads with a diameter of 3 μm and 2) porous silica beads with a diameter of 5 μm. Erythrocyte membranes were immobilized onto beads simply by incubation, without sonication or osmotic lysis. Membrane orientation before and after immobilization was identified with two immunofluorescence labels: 1) the extracellular part of glycophorin can be labeled with a first monoclonal antibody and a second polyclonal antibody with fluorescence dyes (outside label), while 2) the cytoplasmic domain of Band 3 can be recognized with a first monoclonal antibody and a second fluorescent polyclonal antibody (inside label). Adherent erythrocytes on the beads all ruptured, inverted the asymmetric orientation of the membrane, and selectively exposed their cytoplasmic domain. The surface topography did not influence the orientation or the amount of immobilized membrane. On the other hand, the fact that no adsorption or rupture of erythrocytes could be observed on planar quartz substrates suggests a significant influence of contact curvature on adhesion energy.  相似文献   

8.
Hoffecker IT  Guo WH  Wang YL 《Lab on a chip》2011,11(20):3538-3544
The biophysical machinery that permits a cell to sense substrate rigidity is poorly understood. Rigidity sensing of adherent cells likely involves traction forces applied through focal adhesions and measurement of resulting deformation. However, it is unclear if this measurement takes place underneath single focal adhesions, over local clusters of focal adhesions, or across the length of the entire cell. To address this question, we developed a composite, chip-based material containing many arrays of 6.5 μm × 6.5 μm rigid adhesive islands, with an edge-edge distance of 8 μm, grafted onto the surface of a non-adhesive polyacrylamide hydrogel. This material is thus rigid within single islands while long-range rigidity is determined by the hydrogel. On soft gels, most NIH 3T3 cells spread only across two islands in a given dimension forming small stress fibers and focal adhesions. On stiff gels, cell spreading, stress fibers, and focal adhesions were indistinguishable from those on regular culture surfaces. We conclude that rigidity sensing is dictated by material compliance across the cell length and that responses to rigidity may be inhibited at any point when large substrate strain is encountered during spreading. Our finding may serve as a guideline for the design of biomaterials for tissue engineering.  相似文献   

9.
The bond lifetime-force behavior of the immunoglobulin G (IgG)-protein A interaction has been studied with magnetic tweezers to characterize the physical properties of the bond under nonequilibrium conditions. Super-paramagnetic microparticles were developed that have a high and uniform magnetization to simultaneously apply a piconewton-scale tensile force to many thousands of IgG-protein A bonds. A strong and a weak slip bond were detected with an effective bond length that is characteristic of short-range, stiff intermolecular interactions. These bonds are attributed to the interaction of protein A with the constant region (Fc) and heavy chain variable domain (VH) of IgG, respectively. The IgG-VH interaction appears to be one of the weakest specific molecular interactions that has been identified with a single molecule force measurement technique. This study demonstrates that magnetic tweezers can be used to rapidly characterize very weak biomolecular interactions as well as strong biomolecular interactions with a high degree of accuracy.  相似文献   

10.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   

11.
The purpose of this study was to investigate the effect of microstructured material surface on cell adhesion and locomotion in real-time. ArF excimer laser direct-writing ablation was used to fabricate microwell patterns with precise control of size and spacing on glass. The influence of the ablation process parameters (laser fluence, pulse number and repetition rate) on the micromachining quality (depth, width, aspect ratio and edge effects) of the microwells was established. Human fibroblast cells, as an example of anchorage-dependent cells, were seeded onto the microstructured glass substrate and time-lapse microscopy was used to study cell adhesion and locomotion. The interaction with microstructured materials resulted in fibroblast cell repulsion and the cells exhibited a higher locomotion speed (75.77±3.36 μm/h) on the structures in comparison with plane glass control (54.01±15.53 μm/h). Further studies are needed to firmly establish the potential of microstructuring, for example, in elongating the life spans of implantable devices.  相似文献   

12.
We investigated the delamination problem at the metal‐polymer interface and the mechanical buckling of the metal layer at a localized area of the metallic shell under compression between two parallel plates. First, polystyrene (PS) beads were synthesized by dispersion polymerization and then their sulfonation process. After sequential electroless deposition, the average size of multi‐metal coated sulfonated polystyrene (SPS) bead was ca 4.95 µm. Using the electromechanical indentation, the electrical resistance of a single metal‐coated SPS bead decreased with increasing compressive strain without delamination at the metal‐polymer interface, and its electrical resistance showed 5.65 Ω. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Plasma membrane tension, produced by the underlying cytoskeleton, governs many dynamic processes such as fusion, blebbing, exo- and endocytosis, cell migration, and adhesion. Here, a new protocol is introduced to model this intricate and often overlooked aspect of the plasma membrane. Lipid bilayers spanning pores of 600 nm radius were prepared by adsorption and spreading of giant unilamellar vesicles (GUVs) on moderately hydrophilic porous substrates prepared by gold-coating and subsequent self-assembly of a mercaptoethanol monolayer. Rupture of GUVs formed tens of micrometer sized pore-spanning membrane patches displaying low tension of σ ≤ 3.5 mN m(-1) and lateral diffusion constants of about 8 μm(2) s(-1). Site-specific force indentation experiments were performed to determine membrane tension as a function of lipid composition: for pure DOPC bilayers, a tension of 1.018 ± 0.014 mN m(-1) was measured, which was increased by the addition of cholesterol to 3.50 ± 0.15 mN m(-1). Compared to DOPC, POPC bilayers displayed a larger tension of 2.00 ± 0.09 mN m(-1). Addition and subsequent partitioning of 2-propanol was shown to significantly reduce the membrane tension as a function of its concentration.  相似文献   

14.
纳米粒子在生物医学和大气环境领域的广泛研究使得其生物安全性越来越受到重视。目前已经有许多研究关注纳米粒子与细胞的相互作用及细胞毒性问题。本综述从细胞力学-化学偶联的角度总结了近五年来有关纳米粒子与细胞相互作用的研究进展。首先介绍了与细胞力学-化学偶联性质相关的分子基础以及目前检测细胞机械性质的纳米技术,然后重点讨论了纳米粒子对细胞粘附、骨架、刚度和迁移性质的影响。在此基础上,进一步指出了纳米生物力学-化学偶联的挑战与展望。  相似文献   

15.
In this paper, foam-structured fluorescent mesoporous silica nanoparticles (FMSNs) are produced in a sol-gel method with the introduction of a phosphonate functional group. It is found that the phosphonate functionalized FMSNs with the foam structure minimizes the aggregation of FMSNs in solution. The average particle size of the FMSNs without and with phosphonate functionalization is 46.3 ± 5 nm and 60.5 ± 8 nm in diameter, respectively. The latter one exhibits higher fluorophore loading capacity (~67 ± 2.5%). The excitation wavelength (λ(ex)) of FMSNs is observed at 526 nm, approximate 12 nm larger in the Stoke-shift compared to the free organic dye at 494/514 nm. Furthermore, the photostability of the hydrophobic fluorophore is greatly improved by the FMSNs with the foam structure. In addition, the dose-dependent nature of FMSN uptake is assessed for the immune cells, the bone marrow-derived dendritic immune cells (BMDCs). Our results indicate that approximately 42% of BMDCs are able to take up foam-structured FMSNs (>5 μg/ml) without decreasing the viability of BMDCs. Thus, the phosphonate functionalized FMSNs with the foam structure are suitable to be used for many biomedical applications, especially in cell tracking.  相似文献   

16.
Holographic tweezers have revolutionized the way we do experiments at the micron scale. The possibility of applying controlled force fields on simultaneously trapped micro-particles has allowed to directly probe interactions and mechanical properties of colloids, macromolecules and living cells. Holographic micromanipulation requires the careful shaping of a laser beam that is then focused by a microscope objective onto a micro-hologram in the sample volume. The same objective is used for imaging. That approach is therefore limited to in vitro samples contained in transparent cells that are easily accessed optically. Here we demonstrate that the complex light propagator of a real multimode fiber can be directly measured. That allows to transmit a micro-hologram through a 1 metre long (60 μm core) optical fiber and produce dynamic arrays of focused spots at the fiber output. We show that those spots can be used for interactive holographic micromanipulation of micron sized beads facing the fiber tip. Scanning a single spot across the output fiber we can employ the same fiber as a probe for scanning fluorescence microscopy. Our findings open the way towards the fabrication of endoscopic probes which could be capable of seeing and manipulating single cells deep into biological tissues.  相似文献   

17.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   

18.
The interfacial adhesion between poly (ethylene terephthalate) (PET) and glass beadwas investigated by scanning electron microscope and parallel-plate rheometer. Effect ofinterfacial adhesion on the crystallization and mechenical properties of PET/glass beadcomposites was also studied by differential scanning calorimeter and mechanical testers.The results obtained indicate that the glass bead has a heterogeneous nucleation effecton the PET crystallization. Although better interfacial adhesion is advantageous to theincrease of the tensile strength of the composite, yet it is unfavorable to the crystallizationof PET. It should be pointed out that the crystallization rate of filled PET is always higherthan that of pure PET, regardless of the state of interfacial adhesion.  相似文献   

19.
Biological cells in nature have diameters of about 7 to 50 μm, with a cell membrane of about 0.01 μm in thickness. This means that the total membrane area available for diffusion can be extremely large in comparison to the volume and that the cell membrane can also be very thin without the loss of mechanical strength. In addition, rapid mixing is possible within the individual microscopic compartments. Biological cells have very complex and selective enzyme systems to act on substrates crossing the cell membrane. Artificial cells in the form of spherical ultrathin polymeric membrane envelopes containing enzymes have been prepared in this laboratory with some of these properties [1-3]. Detailed papers and upadated information published since then on this subject have been described in a recent monograph [4].  相似文献   

20.
Here, a simple micro free‐flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο‐BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion‐exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion‐exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο‐BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10?11 M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号