首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ferrocene/NaY zeolite composites (Fc/NaY) are introduced on the surface of a glassy carbon electrode together with the hydrophobic ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6). The modified electrode thus constructed exhibits a pair of reversible redox peaks corresponding to ferrocene. Additionally the peak separation remains almost constant (58–75 mV) and the value of the ratio ipa/ipc is close to 1 for scan rates in the range from 10 to 1000 mV s?1. The effects of the scan rate, aqueous supporting electrolytes, hydrophobic ionic liquid and the contents of ferrocene encapsulated by electrochemistry are investigated. The extrazeolite electron transfer process is discussed. Furthermore, the Fc/NaY/IL‐modified electrode shows good mediation towards oxidation of ascorbic acid, dopamine, hydroquinone, and catechol.  相似文献   

2.
The self‐assembly and gelation behavior of a series of mono‐ and disubstituted ferrocene (Fc)–peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene–peptide conjugates self‐assemble into organogels by controlling the conformation of the central ferrocene core, through inter‐ versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO–L FL FL A‐OMe and FcCO–L FL FD A‐OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO–D FL FL A‐OMe and FcCO–L FD FL A‐OMe exclusively produced straight nanorods and non‐interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO‐FFA‐OMe]2 were constructed for the study of chirality‐organized structures.  相似文献   

3.
A new series of donor–bridge–acceptor (D–B–A) compounds consisting of π‐conjugated oligofluorene (oFL) bridges between a ferrocene (Fc) electron‐donor and a fullerene (C60) electron‐acceptor have been synthesized. In addition to varying the length of the bridge (i.e., mono‐ and bi‐fluorene derivatives), four different ways of linking ferrocene to the bridge have been examined. The Fc moiety is linked to oFL: 1) directly without any spacer, 2) by an ethynyl linkage, 3) by a vinylene linkage, and 4) by a p‐phenylene unit. The electronic interactions between the electroactive species have been characterized by cyclic voltammetry, absorption, fluorescence, and transient absorption spectroscopy in combination with quantum chemical calculations. The calculations reveal exceptionally close energy‐matching between the Fc and the oFL units, which results in strong electronic‐coupling. Hence, intramolecular charge‐transfer may easily occur upon exciting either the oFLs or Fcs. Photoexcitation of Fc–oFL–C60 conjugates results in transient radical‐ion‐pair states. The mode of linkage of the Fc and FL bridge has a profound effect on the photophysical properties. Whereas intramolecular charge‐separation is found to occur rather independently of the distance, the linker between Fc and oFL acts (at least in oFL) as a bottleneck and significantly impacts the intramolecular charge‐separation rates, resulting in beta values between βCS 0.08 and 0.19 Å?1. In contrast, charge recombination depends strongly on the electron‐donor–acceptor distance, but not at all on the linker. A value of βCR (0.35±0.01 Å?1) was found for all the systems studied. Oligofluorenes prove, therefore, to be excellent bridges for probing how small structural variations affect charge transport in D–B–A systems.  相似文献   

4.
A new ferrocene functionalized macrocyclic receptor 1,8‐bis(ferrocenylmethyl)‐5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane (R) has been designed and synthesized to study its potential application as chemosensor. The receptor has been characterized by spectral techniques and X‐ray diffraction. The compound crystallizes in the orthorhombic space group Pcab with four molecules in a unit cell (half‐a‐molecule in the asymmetric unit). The electrochemical studies of the receptor in dioxane–water (7:3 v/v, 25 °C) indicate that the receptor is pH‐dependent with a displacement of E1/2 to more anodic potentials with a decrease in the pH from 12 to 5. The electrochemical behaviour of R was also studied in the presence of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ in dioxane–water (7:3 v/v, 25 °C, [Bun4N][ClO4]), showing that upon complexation the ferrocene–ferrocenium half‐wave potential shifts anodically in relation to that of the free receptor. The maximum electrochemical shift (ΔE1/2) of 46 mV was found in the presence of Cu2+, followed by Co2+ (20 mV), Mn2+ (15 mV), Ni2+ (13 mV) and Zn2+ (9 mV). Moreover, the receptor R is able to electrochemically and selectively sense Cu2+ in the presence of the other transition metal cations studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A series of porphyrin‐based imine gels have been synthesized via dynamic covalent gelation between 5,10,15,20‐tetra(4‐aminophenyl)‐21H,23H‐porphyrin (H2TAPP) derivatives and various aldehyde compounds. The porphyrin‐ferrocene imine gels based on MTAPP (M=H2, Ni2+, Co2+, Pd2+ and Zn2+) and ferrocene‐1,1′‐dicarbaldehyde (NA) display efficient HER, OER and ORR activities in alkaline media. Among the gels, CoTAPP‐NA shows an HER current density of 10 mA cm?2 at low overpotential of 470 mV and small Tafel slope of 110 mV decade?1 in alkaline media. CoTAPP‐NA also exhibits OER catalytic activity with low overpotential (416 mV for 10 mA cm?2). CoTAPP‐NA shows ability in overall water splitting in alkaline media. In addition, CoTAPP‐NA exhibits onset potential (Ep) of 0.95 V and half‐wave potential (E1/2) of 0.84 V in 1.0 mol L?1 KOH solution for oxygen reduction. Moreover, the gel catalyst shows good stability.  相似文献   

6.
Bacterial adhesion, mediated through interaction of bacterial lectins with carbohydrate structures presented on the surface of the host cells, is a prerequisite for infection. Anti‐adhesion therapy, based on the inhibition of lectins by suitable carbohydrates, has been considered as a weapon for the combat of microbial diseases. Structural alteration of aglycon portions of mannose derivatives strongly influences their inhibitory potency toward type 1 fimbriated Escherichia coli. Thus several conjugates of mannose‐containing ferrocene aglycon moieties were synthesized and tested. The novel ferrocene conjugates 10, 12 and 14 were obtained by esterification of O‐mannosylated propionic acid 1 with ferrocene alcohols R‐Fn‐(CH2)n‐OH (Fn = 1,1'‐ferrocenylene; 2, n = 1, R = COOMe; 7, n = 1, R = NHBoc; 8, n = 2, R = H) in the presence of Boc2O/DMAP with subsequent debenzylation of the intermediate O‐protected esters. Performed hemagglutination inhibitory tests showed that the examined bioorganometallics exhibit better inhibitory activity than known inhibitor methyl α‐d ‐mannoside. Thus ferrocene–mannose conjugate 14 with the dimethylene spacer between ferrocene core and chiral linker displayed the best inhibitory efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The electrochemical behavior of ferrocene has been studied in a number of room temperature ionic liquids. Diffusion‐controlled, well‐defined anodic and cathodic peaks were found for the Fc/Fc+ (ferrocene/ferrocenium) oxidation/reduction on the gold electrode. Ohmic resistance R between working and auxiliary electrodes was deduced from impedance measurements. Cyclic voltammograms were corrected for the base line current as well as for the ohmic drop (IR). The formal potential 1/2(Epa+Epc) for ferrocene reduction/oxidation in aprotic ionic liquids tested is within a relatively narrow range and may be approximated by the value of 0.527±0.018 V (against the cryptate Ag/Ag+222 in acetonitrile reference). Ferrocene diffusion coefficients, calculated from the peak current dependence on the sweep rate, were of the order of 10?7 cm2 s?1.  相似文献   

8.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

9.
Indolin‐2‐one (oxindole), (I), undergoes a Knoevenagel condensation with ferrocene‐1,1′‐dicarbaldehyde, (II), to afford the title complex 3,3′‐[(E,E)‐ferrocene‐1,1′‐diyldimethylidyne]diindolin‐2‐one dichloromethane disolvate, [Fe(C28H20N2O2)]·2CH2Cl2, (IV). The structure of (IV) contains two ferrocene complex molecules in the asymmetric unit and displays, as expected, intermolecular hydrogen bonding (N—H...O=C) between the indolin‐2‐one units. Intermolecular π–π stacking interactions are also observed.  相似文献   

10.
Four heterodimetallic complexes [Ru(Fcdpb)(L)](PF6) (Fcdpb=2‐deprotonated form of 1,3‐di(2‐pyridyl)‐5‐ferrocenylbenzene; L=2,6‐bis‐(N‐methylbenzimidazolyl)‐pyridine (Mebip), 2,2′:6′,2′′‐terpyridine (tpy), 4‐nitro‐2,2′:6′,2′′‐terpyridine (NO2tpy), and trimethyl‐4,4′,4′′‐tricarboxylate‐2,2′:6′,2′′‐terpyridine (Me3tctpy)) have been prepared. The electrochemical and spectroelectrochemical properties of these complexes have been examined in CH2Cl2, CH3NO2, CH3CN, and acetone. These complexes display two consecutive redox couples owing to the stepwise oxidation of the ferrocene (Fc) and ruthenium units, respectively. The potential difference, ΔE1/2 (E1/2(RuII/III)?E1/2(Fc0/+)), decreased slightly with increasing solvent donocity. The mixed‐valent states of these complexes have been generated by electrolysis and the resulting intervalence charge‐transfer (IVCT) bands have been analyzed by Hush theory. Good linear relationships exist between the energy of the IVCT band, Eop, and ΔE1/2 of four mixed‐valent complexes in a given solvent.  相似文献   

11.
The new ligand, [Fc(cyclen)2] ( 5 ) (Fc=ferrocene, cyclen=1,4,7,10‐tetraazacyclododecane), and corresponding ZnII complex receptor, [Fc{Zn(cyclen)(CH3OH)}2](ClO4)4 ( 1 ), consisting of a ferrocene moiety bearing one ZnII‐cyclen complex on each cyclopentadienyl ring, have been designed and prepared through a multi‐step synthesis. Significant shifts in the 1H NMR signals of the ferrocenyl group, cf. ferrocene and a previously reported [Fc{Zn(cyclen)}]2+ derivative, indicated that the two ZnII‐cyclen units in 1 significantly affect the electronic properties of the cyclopentadienyl rings. The X‐ray crystal structure shows that the two positively charged ZnII‐cyclen complexes are arranged in a trans like configuration, with respect to the ferrocene bridging unit, presumably to minimise electrostatic repulsion. Both 5 and 1 can be oxidized in 1:4 CH2Cl2/CH3CN and Tris‐HCl aqueous buffer solution under conditions of cyclic voltammetry to give a well defined ferrocene‐centred (Fc0/+) process. Importantly, 1 is a highly selective electrochemical sensor of thymidilyl(3′‐5′)thymidine (TpT) relative to other nucleobases and nucleotides in Tris‐HCl buffer solution (pH 7.4). The electrochemical selectivity, detected as a shift in reversible potential of the Fc0/+ component, is postulated to result from a change in the configuration of bis(ZnII‐cyclen) units from a trans to a cis state. This is caused by the strong 1:1 binding of the two deprotonated thymine groups in TpT to different ZnII centres of receptor 1 . UV‐visible spectrophotometric titrations confirmed the 1:1 stoichiometry for the 1 :TpT adduct and allowed the determination of the apparent formation constant of 0.89±0.10×106 M ?1 at pH 7.4.  相似文献   

12.
Hierarchical self‐assembly of disubstituted ferrocene (Fc)–peptide conjugates that possess Gly‐Val‐Phe and Gly‐Val‐Phe‐Phe peptide substituents leads to the formation of nano‐ and micro‐sized assemblies. Hydrogen‐bonding and hydrophobic interactions provide directionality to the assembly patterns. The self‐assembling behavior of these compounds was studied in solution by using 1H NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single‐crystal X‐ray diffraction (XRD), powder X‐ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self‐assembly of Fc–peptides through intra‐ and intermolecular hydrogen‐bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO‐Gly‐Val‐Phe‐OMe]2 ( 1 ), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc–tetrapeptide conjugate Fc[CO‐Gly‐Val‐Phe‐Phe‐OMe]2 ( 2 ) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen‐bonding and hydrophobic interactions that stem from the additional Phe residues.  相似文献   

13.
Glutathione (GSH) tagged with a ferrocene (Fc) label at its C‐terminal was synthesized via coupling ferrocenyl amine to glutathione using o‐(benzotriazol‐1‐yl)‐N,N,N′,N′‐tetramethyluronium (HBTU)/1‐hydroxybenzotrizole (HOBt). The presence of Fc yielded well defined voltammetric signals, rendering the Fc‐tagged GSH (GSH‐Fc) suitable for electrochemical studies of GSH binding to other biological species. The interaction of GSH‐Fc with bovine serum albumin (BSA) was investigated, and a binding ratio of 1.41±0.06 (GSH‐Fc/BSA) and an affinity constant Ka of 6.53±2.01×106 M?1 were determined. These results compare well with those measured by fluorescence using untagged GSH, suggesting that the attachment of Fc to GSH does not significantly perturb the GSH structure and binding behavior. By contrasting the binding behavior to several compounds that are known to conjugate to different domains of BSA, the voltammetric study confirmed that GSH‐Fc binds at subdomain IIA of BSA with high affinity. The versatility of GSH‐Fc for studying GSH binding to surface‐confined proteins was also demonstrated with the GSH binding to electroinactive Zn‐metallothionein (Zn7‐MT) through hydrogen binding at the region between the Zn7‐MT α and β domains.  相似文献   

14.

Abstract  

New ferrocenyl ketones were obtained as precursors of novel π-conjugated ferrocene-dithiafulvalene (Fc-DTF) and π-extended-ferrocenedithia-fulvalenes (π-exFc-DTF) as electron-donor conducting materials from ferrocene by a direct aroylation process using the Friedel–Crafts reaction. Novel Fc-DTF conjugates were synthesized using the Wittig–Horner reaction and their structures were determined. The redox behavior of the ferrocenyl carbonyl compounds Fc-DTF and Fc-π-exDTF was investigated in comparison to the parent ferrocene by means of cyclic voltammetry. A one-electron redox behavior was observed for carbonylferrocenes as one wave potential, while a two-electron process was observed as two oxidation waves for the conjugates. Introduction of electron-withdrawing groups led to increasing E pa values and decreasing ΔE p values. The UV–Vis spectra of some compounds were studied in comparison with ferrocene. The absorption spectra showed a red-shift with a slight increase in the absorption intensities.  相似文献   

15.
The [Fc? bis{ZnII(TACN)(Py)}] complex, comprising two ZnII(TACN) ligands (Fc=ferrocene; Py=pyrene; TACN=1,4,7‐triazacyclononane) bearing fluorescent pyrene chromophores linked by an electrochemically active ferrocene molecule has been synthesised in high yield through a multistep procedure. In the absence of the polyphosphate guest molecules, very weak excimer emission was observed, indicating that the two pyrene‐bearing ZnII(TACN) units are arranged in a trans‐like configuration with respect to the ferrocene bridging unit. Binding of a variety of polyphosphate anionic guests (PPi and nucleotides di‐ and triphosphate) promotes the interaction between pyrene units and results in an enhancement in excimer emission. Investigations of phosphate binding by 31P NMR spectroscopy, fluorescence and electrochemical techniques confirmed a 1:1 stoichiometry for the binding of PPi and nucleotide polyphosphate anions to the bis(ZnII(TACN)) moiety of [Fc? bis{ZnII(TACN)(Py)}] and indicated that binding induces a trans to cis configuration rearrangement of the bis(ZnII(TACN)) complexes that is responsible for the enhancement of the pyrene excimer emission. Pyrophosphate was concluded to have the strongest affinity to [Fc? bis{ZnII(TACN)(Py)}] among the anions tested based on a six‐fold fluorescence enhancement and 0.1 V negative shift in the potential of the ferrocene/ferrocenium couple. The binding constant for a variety of polyphosphate anions was determined from the change in the intensity of pyrene excimer emission with polyphosphate concentration, measured at 475 nm in CH3CN/Tris‐HCl (1:9) buffer solution (10.0 mM , pH 7.4). These measurements confirmed that pyrophosphate binds more strongly (Kb=(4.45±0.41)×106 M ?1) than the other nucleotide di‐ and triphosphates (Kb=1–50×105 M ?1) tested.  相似文献   

16.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

17.
The reaction of [Ru3(CO)12] ( 1 ) with six equiv. of FcC(O)CH2C(O)R ( 2a , R = Me; 2b , R = Fc; Fc = Fe(η5-C5H4)(η5-C5H5)) produced the RuII compounds [Ru(CO)2(FcC(O)CHC(O)R)2] ( 3a , R = Me; 3b , R = Fc) in moderate yields. IR studies and single-crystal X-ray analysis ( 3a ) confirmed that the CO ligands are cis-oriented and that the respective β-diketonates O,O'-chelate-bonded setting-up an octahedral surrounding at RuII. Electrochemical (cyclic and square-wave voltammetry) and spectroelectrochemical (UV/Vis-NIR, IR) measurements were additionally carried out. Compounds 3a , b display two ( 3a : E1o' = 140; E2o' = 255 mV; ΔEo' = 115 mV for [ 3a ]+/[ 3a ]2+) or four ( 3b : E1o' = 80 mV, E2o' 190 mV (ΔEo' = 110 mV, [ 3b ]+/[ 3b ]2+), E3o' = 355 mV (ΔEo' = 165 mV, [ 3b ]2+/[ 3b ]3+), E4o' = 490 mV (ΔEo' = 135 mV, [ 3b ]3+/[ 3b ]4+)) electrochemical reversible one-electron redox processes indicating electrostatic interactions among the ferrocenyl groups as oxidation progresses, which was confirmed by UV/Vis-NIR and in situ IR spectroscopy. One ferrocenyl group on each β-diketonate ligand is by this means 1st oxidized before the 2nd ferrocenyl group of the same β-diketonate building block follows.  相似文献   

18.
The synthesis of 1-Fc- ( 3 ), 1-Br-6-Fc- ( 5 a ), 2-Br-7-Fc- ( 7 a ), 1,6-Fc2- ( 5 b ), 2,7-Fc2-pyrene ( 7 b ), 3,6-Fc2-9,10-phenanthrenedione ( 10 ), and 3,6-Fc2-9,10-dimethoxyphenanthrene ( 12 ; Fc=Fe(η5-C5H4)(η5-C5H5)) is discussed. Of these compounds, 10 and 12 form 1D or 2D coordination polymers in the solid state. (Spectro)Electrochemical studies confirmed reversible Fc/Fc+ redox events between −130 and 160 mV. 1,6- and 2,7-Substitution in 5 a (E°′=−130 mV) and 7 a (E°′=50 mV) influences the redox potentials, whereas the ones of 5 b and 7 b (E°′=20 mV) are independent. Compounds 5 b , 7 b , 10 , and 12 show single Fc oxidation processes with redox splittings between 70 and 100 mV. UV/Vis/NIR spectroelectrochemistry confirmed a weak electron transfer between FeII/FeIII in mixed-valent [ 5 b ]+ and [ 12 ]+. DFT calculations showed that 5 b non-covalently interacts with the single-walled carbon nanotube (SWCNT) sidewalls as proven by, for example, disentangling experiments. In addition, CV studies of the as-obtained dispersions confirmed exohedral attachment of 5 b at the SWCNTs.  相似文献   

19.
The solid state structures of three bissubstituted glycine ferrocene conjugates are described allowing a direct comparison of the structural parameters. Whereas the fully protected glycine ester Fc(Gly-OEt)2 adopts a 1,3′-conformation leading exclusively to intermolecular H-bond formation, the free acid Fc(Gly-OH)2 adopts the more compact 1,3′-comformation with intramolecular H-bonding. The same intramolecular H-bonding pattern is adopted by the glycine ferrocenophane Fc(Gly-CSA)2.  相似文献   

20.
Selective enzyme‐catalysed biotransformations offer great potential in organic chemistry. However, special requirements are needed to achieve optimum enzyme activity and stability. A bicontinuous microemulsion is proposed as reaction medium because of its large connected interface between oil and water domains at which a lipase can adsorb and convert substrates in the oil phase of the microemulsion. Herein, a microemulsion consisting of buffer–n‐octane–nonionic surfactant CiEj was used to investigate the key factors that determine hydrolyses of p‐nitrophenyl esters catalysed by the lipase B from Candida antarctica (CalB). The highest CalB activity was found around 44 °C in the absence of NaCl and substrates with larger alkyl chains were better hydrolysed than their short‐chained homologues. The CalB activity was determined using two different co‐surfactants, namely the phospholipid 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) and the sugar surfactant decyl β‐D ‐glucopyranoside (β‐C10G1). The results show the CalB activity as linear function of both enzyme and substrate concentration with an enhanced activity when the sugar surfactant is used as co‐surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号