首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the electronic transport properties for a molecular device model constructed by a phenylene ethynylene oligomer molecular with different side groups embedding in a carbon chain between two graphene electrodes. Using the first-principles method, the unusual dual conductance, negative differential resistance (NDR) behavior with large peak to valley ratio, and obvious rectifying performance are numerically observed in such proposed molecular device. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals (MOs) as well as transmission coefficients under various external voltage biases gives an inside view of the observed results, which suggests that the dual conductance behavior and rectifying performance are due to the asymmetry distribution of the frontier MOs as well as the corresponding coupling between the molecule and electrodes. But the NDR behavior comes from the conduction orbital being suppressed at certain bias. Interestingly, the conduction properties can be tuned by introducing side groups to the molecule and the rectification as well as the NDR behavior (peak to valley ratio) can be improved by adding different side groups in the device model.  相似文献   

2.
By using scanning tunneling microscope induced luminescence (STML) technique, we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine (PtPc) molecule and the electron excitation mechanisms behind. The molecule is found to emit light at both bias polarities but with different emission energies. At negative excitation bias, only the fluorescence at 637 nm is observed, which originates from the LUMO→HOMO transition of the neutral PtPc molecule and exhibits stepwise-like increase in emission intensities over three different excitation-voltage regions. Strong fluorescence in region (Ⅰ) is excited by the carrier injection mechanism with holes injected into the HOMO state first; moderate fluorescence in region (Ⅱ) is excited by the inelastic electron scattering mechanism; and weak fluorescence in region (Ⅲ) is associated with an up-conversion process and excited by a combined carrier injection and inelastic electron scattering mechanism involving a spin-triplet relay state. At positive excitation bias, more-than-one emission peaks are observed and the excitation and emission mechanisms become complicated. The sharp molecule-specific emission peak at ~911 nm is attributed to the anionic emission of PtPc\begin{document}$^-$\end{document} originated from the LUMO+1→LUMO transition, whose excitation is dominated by a carrier injection mechanism with electrons first injected into the LUMO+1 or higher-lying empty orbitals.  相似文献   

3.
Ab initio relativistic density functional theoretical calculations have been carried out on π-conjugated oligomers of increasing length with S, Se, and Te as heteroatoms. The band gap of the corresponding polymers has been obtained by plotting lowest unoccupied molecular orbital (LUMO)-highest occupied molecular orbital (HOMO)gap against the reciprocal of the number of monomer units (1/N) and extrapolating the curve to 1/N = 0. With B3LYP functional, we predict that role of relativistic correction terms is not very significant in the determination of final band gap of thiophene, selenophene, and tellurophene polymer. The origin of this observation is provided through the density of states (DOS) analysis which manifests that DOS contribution across the Fermi level of these polymers is mostly governed by C atoms and as a consequence relativistic correction terms due to heavy heteroatom remain insignificant to the band gap modification. We also inspected the role of inter-chain interaction in determining the net LUMO-HOMO gap of π-stacked double chain oligomers of increasing length. We have found that due to the exciton splitting in the stacked configurations, the LUMO-HOMO gap decreases steadily. Furthermore, we have noticed that dispersion force has important role in the reduction of the LUMO-HOMO gap of the oligomers studied.  相似文献   

4.
We present a theoretical study of electron transport in tailored zigzag graphene nanoribbons (ZGNRs) with triangular structure using density functional theory together with the nonequilibrium Green's function formalism. We find significant rectification with a favorite electron transfer direction from the vertex to the right edge. The triangular ZGNR connecting to the electrode with one thiol group at each terminal shows an average rectification ratio of 8.4 over the bias range from ?1.0 to 1.0 V. This asymmetric electron transport property originates from nearly zero band gap of triangular ZGNR under negative bias, whereas a band gap opens under positive bias. When the molecule is connected to the electrode by multithiol groups, the current is enhanced due to strong interfacial coupling; however, the rectification ratio decreases. The simulation results indicate that the unique electronic states of triangular ZGNR are responsible for rectification, rather than the asymmetric anchoring groups. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
    
Ab initio results of the electronic structure and conduction properties of both periodic and aperiodic DNA and protein models are reviewed. Band structure results of the periodic systems are obtained on the basis of theab initio Hartree-Fock crystal orbital method. The electronic density of states (DOS) of the multicomponent periodic and aperiodic polypeptide chains, and of single-stranded periodic and aperiodic DNA, on the other hand, are determined using theab initio matrix block negative factor counting technique. Large values of the fundamental energy gap obtained for all the systems studied rule out the possibility of intrinsic conduction in them. The DOS curves of aperiodic DNA and polypeptide chains, in contrast to those of corresponding periodic systems, are found to consist of relatively broader regions of allowed energy states with a few small gaps in between. The study of the localization properties of the lowest unoccupied energy levels in the conduction band region of aperiodic polypeptide chains indicates that these wavefunctions are highly localized. In the light of these results, the possibility of charge transport through hopping conduction in proteins under the assumption of charge transfer to the polypeptide chains is discussed. Finally, how the correlation effects could be considered in an approximate way for these biopolymers is outlined.  相似文献   

6.
The effect of inelastic scattering, particularly that of the electron-phonon interactions, on the current-voltage characteristics of a one-dimensional tight-binding molecular wire has been investigated. The wire has been modeled using the Su-Schreiffer-Heeger Hamiltonian and we compute the current using the Landauer's scattering formalism. Our calculations show that the presence of strong electron-lattice coupling in the wire can induce regions of negative differential resistance (NDR) in the I-V curves. The reasons for this can be traced back to the quasidegeneracy in few of the low-energy molecular levels in the presence of electron-phonon coupling and an external applied bias. The molecular levels become highly delocalized at the critical bias at which the NDR is seen, corresponding to the vanishing of the electron-phonon coupling with equal bond lengths.  相似文献   

7.
以双笼氟化富勒烯C_(20)F_(18)(CO)_2C_(20)F_(18)为中心分子,与Ag(100)纳米线电极连接构筑分子电子器件,通过第一性原理和非平衡格林函数相结合的方法,对器件的电子输运特性进行了研究.结果显示,在外加偏压的作用下,中心分子的前线轨道逐渐定域在分子的左侧,电子透射通道被阻塞,所对应的共振隧穿峰被压制,器件的电流-电压特性曲线在0.3~0.8V区间内表现出明显的负微分电阻(NDR)现象.  相似文献   

8.
Hybrid films of multilayer graphene (MG) containing amorphous carbon (a‐C) were synthesized on Al substrates by microwave surface‐wave plasma chemical vapor deposition. Raman scattering and surface transmission electron microscopy showed that the carbon films contained a large quantity of MG when a radio frequency (RF) substrate bias was not applied. Amorphization of graphene in the carbon film was promoted by applying an RF bias, which generated Ar+ in the plasma. The bandgaps of the films were found to increase as the Raman intensity ratios between the 2D‐band (at 2700 cm?1) and D‐band (at 1350 cm?1) decreased, indicating the formation of a‐C. The MG/a‐C all‐sp2 phase of carbon hybrid films exhibited an increase in current density under 5 mW/cm2 of AM1.5G solar simulated irradiation as the RF bias increased because of Ar+‐induced amorphization of the graphene. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
10.
利用密度泛函理论研究石墨烯和硼氮类石墨烯包覆对LiFePO4 (010)表面结构和电导性质的影响. 结果表明包覆层和LiFePO4 (010)表面之间的相互作用可以改善LiFePO4 (010)表面的电导性能. 石墨烯包覆LiFePO4 (010)表面后, 禁带宽度从3.3 eV减小到2.1 eV. 硼氮类石墨烯包覆LiFePO4 (010)表面后, 虽然其价带顶和导带底仍由Fe的3d轨道贡献, 但禁带中出现两个间隔为0.6 eV的带隙态, 由硼氮类石墨烯与LiFePO4(010)表面有直接接触并形成共价键的B原子和N原子贡献.  相似文献   

11.
We investigated the effects of periodic external potentials on properties of charge carriers in graphene using both the first-principles method based on density functional theory (DFT) and a theoretical approach based on a generalized effective spinor Hamiltonian. DFT calculations were done in a modified Kohn-Sham procedure that includes the effects of the periodic external potential. Unexpected energy band gap opening and quenching were predicted for the graphene superlattice with two symmetrical sublattices and those with two unsymmetrical sublattices, respectively. Theoretical analysis based on the spinor Hamiltonian showed that the correlations between pseudospins of Dirac fermions in graphene and the applied external potential, and the potential-induced intervalley scattering, play important roles in energy-gap opening and quenching.  相似文献   

12.
Computational and experimental studies using linear muffin tin orbital methods and UV-visible diffuse reflectance spectroscopy, respectively, were performed to quantitatively probe the relationships between composition, crystal structure and the electronic structure of oxides containing octahedrally coordinated d0 transition metal ions. The ions investigated in this study (Ti4+, Nb5+, Ta5+, Mo6+, and W6+) were examined primarily in perovskite and perovskite-related structures. In these compounds the top of the valence band is primarily oxygen 2p non-bonding in character, while the conduction band arises from the π∗ interaction between the transition metal t2g orbitals and oxygen. For isostructural compounds the band gap increases as the effective electronegativity of the transition metal ion decreases. The effective electronegativity decreases in the following order: Mo6+>W6+>Nb5+∼Ti4+>Ta5+. The band gap is also sensitive to changes in the conduction band width, which is maximized for structures possessing linear M-O-M bonds, such as the cubic perovskite structure. As this bond angle decreases (e.g., via octahedral tilting distortions) the conduction band narrows and the band gap increases. Decreasing the dimensionality from 3-D (e.g., the cubic perovskite structure) to 2-D (e.g., the K2NiF4 structure) does not significantly alter the band gap, whereas completely isolating the MO6 octahedra (e.g., the ordered double perovskite structure) narrows the conduction band width dramatically and leads to a significant increase in the band gap. Inductive effects due to the presence of electropositive “spectator” cations (alkali, alkaline earth, and rare-earth cations) tend to be small and can generally be neglected.  相似文献   

13.
We investigate how the electronic structure of amorphous lead oxide (a-PbO) films deposited on ITO substrate is changed after annealing at various temperatures. Both experimental soft X-ray spectroscopic and density functional theory (DFT) based computational techniques are used to explore the electronic structure of this material. X-ray emission, resonant X-ray inelastic scattering, and X-ray absorption spectroscopic techniques are employed to directly probe the valence and conduction bands. We discover that the films are very stable and remain amorphous when exposed to temperatures below 300 °C. An amorphous-to-polycrystalline (α-PbO phase) transformation occurs during annealing at 400 °C. At 500 °C, an alpha to beta phase change is observed. These structural modifications are accompanied by the band gap value changing from 1.4±0.2 eV to 2.0±0.2 eV upon annealing at 400 °C and to 2.6±0.2 eV upon annealing at 500 °C. A difference between surface and bulk structural properties is found for all samples annealed at 500 °C and above; these samples also exhibit an unexpected suppression of O : 2p density of states (DOS) near the bottom of the conduction band, whereas additional electronic states appear well within the valence band. This study provides a significant step forward to understanding the electronic properties of two polymorphic forms of PbO needed for optimization of this material for use in X-ray sensors.  相似文献   

14.
樊玉勤  何阿玲 《物理化学学报》2010,26(10):2801-2806
基于密度泛函理论(DFT)的第一性原理方法,在广义梯度近似(GGA)下研究了纤锌矿Mn-AlN和Cr-AlN的能带结构、态密度与磁学等性质.结果表明,Mn-AlN和Cr-AlN的半金属能隙都随着杂质浓度的增大而减小.原因可能是随着Mn/Cr掺杂浓度的增大,杂质原子间相互作用增强,Mn/Cr 3d与N 2p杂化减弱,使得自旋交换劈裂变小,从而半金属能隙变窄.在同等掺杂浓度下,Mn-AlN比Cr-AlN的半金属能隙大.这是因为Mn 3d态能级比Cr 3d态能级低,Mn 3d与N 2p杂化更强,导致自旋交换劈裂更大,自旋向下子带的导带底相对远离费米能级,因此Mn-AlN的半金属能隙较大.  相似文献   

15.
锰(III)5,10,15-三(五氟苯基)-Corrole配合物的DFT计算   总被引:1,自引:1,他引:0  
在6-31G*水平上采用DFT(UB3LYP)方法对锰(III)5,10,15-三(五氟苯基)-corrole [(TPFC)MnIII]及其咪唑轴向配位加合物(TPFC)MnIII(Im)进行了几何结构全优化. 计算结果表明, 咪唑的配位作用不会改变其基态的高自旋(s=2)特性. (TPFC)MnIII与咪唑配位形成轴向加合物后, 其中心金属Mn原子偏离平面结构, 与corrole大环N4平均平面的距离达到0.02734 nm. NBO分析显示(TPFC)MnIII和(TPFC)MnIII(Im)中心金属锰的电子组态为(dxz)1(dyz)1(dz2)1(dx2-y2)1(dxy)0. (TPFC)MnIII(Im)前线分子轨道能级明显上升, 从其β-(LUMO+3)轨道可见咪唑配位N原子的py轨道与中心金属Mn原子dyz轨道形成了d-pπ轨道. TD-DFT计算发现, (TPFC)MnIII和(TPFC)MnIII(Im)电子光谱Q带的“四轨”特征比B 带明显; (TPFC)MnIII的CT带主要源自β-(HOMO-1)→β-(LUMO+5)和β-HOMO→β-(LUMO+4)的跃迁, (TPFC)MnIII(Im)的CT带则主要源自β-(HOMO-1)→β-(LUMO+3)和β-HOMO→β-(LUMO+4)的跃迁.  相似文献   

16.
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long-range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C(3)N(4)) and electronically active graphene. We find an inhomogeneous planar substrate (g-C(3)N(4)) promotes electron-rich and hole-rich regions, i.e., forming a well-defined electron-hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C(3)N(4) substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C(3)N(4) interface opens a 70 meV gap in g-C(3)N(4)-supported graphene, a feature that can potentially allow overcoming the graphene's band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C(3)N(4) is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C(3)N(4) monolayer, the hybrid graphene/g-C(3)N(4) complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.  相似文献   

17.
Two-dimensional(2D) materials with a high density and low power consumption have become the most popular candidates for next-generation semiconductor electronic devices. As a prototype 2D material, graphene has attracted much attention owing to its stability and ultrahigh mobility. However, zero band gap of graphene leads to very low on-off ratios and thus limits its applications in electronic devices, such as transistors. Although some new 2D materials and doped graphene have nonzero band gaps, the electronic mobility is sacrificed. In this study, to open the band gap of graphene with high electronic mobility, the structure and property of BN-doped graphene were evaluated using first-principles calculations. The formation energies indicate that the six-membered BN rings doped graphene has the most favorable configuration. The band structures show that the band gaps can be opened by such type of doping. Also, the Dirac-cone-like band dispersion of graphene is mostly inhibited, ensuring high electronic mobility. Therefore, codoping BN into graphene might provide 2D materials with nonzero band gaps and high electronic mobility.  相似文献   

18.
In single-molecule junctions, anchoring groups that connect the central molecule to the electrodes have profound effects on the mechanical and electrical properties of devices. The mechanical strength of the anchoring groups affects the device stability, while their electronic coupling strength influences the junction conductance and the conduction polarity. To design and fabricate high-performance single-molecule devices with graphene electrodes, it is highly desirable to explore robust anchoring groups that bond the central molecule to the graphene electrodes. Condensation of ortho-phenylenediamine terminated molecules with ortho-quinone moieties at the edges of graphene generates graphene-conjugated pyrazine units that can be employed as anchoring groups for the construction of molecular junctions with graphene electrodes. In this study, we investigated the fabrication and electrical characterization of single-molecule field-effect transistors (FETs) with graphene as the electrodes, pyrazine as the anchoring groups, and a heavily doped silicon substrate as the back-gate electrode. Graphene nano-gaps were fabricated by a high-speed feedback-controlled electro-burning method, and their edges were fully oxidized; thus, there were many ortho-quinone moieties at the edges. After the deposition of phenazine molecules with ortho-phenylenediamine terminals at both ends, a large current increase was observed, indicating that molecular junctions were formed with covalent pyrazine anchoring groups. The yield of the single-molecule devices was as high as 26%, demonstrating the feasibility of pyrazine as an effective anchoring group for graphene electrodes. Our electrical measurements show that the ten fabricated devices exhibited a distinct gating effect when a back-gate voltage was applied. However, the gate dependence of the conductance varied considerably from device to device, and three types of different gate modulation behaviors, including p-type, ambipolar, and n-type conduction, were observed. Our observations can be understood using a modified single-level model that takes into account the linear dispersion of graphene near the Dirac point; the unique band structure of graphene and the coupling strength of pyrazine with the graphene electrode both crucially affect the conduction polarity of single-molecule FETs. When the coupling strength of pyrazine with the graphene electrode is weak, the highest occupied molecular orbital (HOMO) of the central molecule dominates charge transport. Depending on the gating efficiencies of the HOMO level and the graphene states, devices can exhibit p-type or ambipolar conduction. In contrast, when the coupling is strong, the redistribution of electrons around the central molecule and the graphene electrodes leads to a realignment of the molecular levels, resulting in the lowest unoccupied molecular orbital (LUMO)-dominated n-type conduction. The high yield and versatility of the pyrazine anchoring groups are beneficial for the construction of single-molecule devices with graphene electrodes.  相似文献   

19.
In this study, we have investigated the relationship between aromaticity and photophysical properties of trifluoromethyl-substituted [18]/[20]π porphycenes by using theoretical calculations and various spectroscopic methodologies. Interestingly, we have found that the HOMO-LUMO gap of [20]π porphycene is larger than that of [18]π porphycene, which is in a sharp contrast with those of typical [4n]/[4n+2]π porphyrinoids. Based on our observations, we demonstrate that the origin of this contrasting feature of [20]π porphycene arises from the uniquely large energy splitting between LUMO and LUMO+1 of [18]π porphycene compared with other aromatic [4n+2]π porphyrinoids with nearly degenerate LUMO/LUMO+1. Consequently, we can propose that the energy difference between LUMO and LUMO+1 levels of aromatic [4n+2]π porphyrinoids is an important factor in determining the electronic nature of their corresponding antiaromatic [4n]π porphyrinoids. Moreover, to the best of our knowledge, this is the first study to illustrate the photophysical properties of porphycenes with [4n]π electronic circuits.  相似文献   

20.
Nanoscale quantum plasmon is an important technology that restricts the application of optics, electricity, and graphene photoelectric devices. Establishing a structure–effect relationship between the structure of graphene nanoribbons (GNRs) under stress regulation and the properties of plasmons is a key scientific issue for promoting the application of plasmons in micro-nano photoelectric devices. In this study, zigzag graphene nanoribbon (Z-GNR) and armchair graphene nanoribbon (A-GNR) models of specific widths were constructed, and density functional theory (DFT) was used to study their lattice structure, energy band, absorption spectrum, and plasmon effects under different stresses. The results showed that the Z-GNR band gap decreased with increasing stress, and the A-GNR band gap changed periodically with increasing stress. The plasmon effects of the A-GNRs and Z-GNRs appeared in the visible region, whereas the absorption spectrum showed a redshift trend, indicating the range of the plasmon spectrum also underwent significant changes. This study provides a theoretical basis for the application of graphene nanoribbons in the field of optoelectronics under strain-engineering conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号