首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ~30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.  相似文献   

2.
The potential-energy surface of the first excited state of the 11-cis-retinal protonated Schiff base (PSB11) chromophore has been studied at the density functional theory (DFT) level using the time-dependent perturbation theory approach (TDDFT) in combination with Becke's three-parameter hybrid functional (B3LYP). The potential-energy curves for torsion motions around single and double bonds of the first excited state have also been studied at the coupled-cluster approximate singles and doubles (CC2) level. The corresponding potential-energy curves for the ground state have been calculated at the B3LYP DFT and second-order M?ller-Plesset (MP2) levels. The TDDFT study suggests that the electronic excitation initiates a turn of the beta-ionone ring around the C6-C7 bond. The torsion is propagating along the retinyl chain toward the cis to trans isomerization center at the C11=C12 double bond. The torsion twist of the C10-C11 single bond leads to a significant reduction in the deexcitation energy indicating that a conical intersection is being reached by an almost barrierless rotation around the C10-C11 single bond. The energy released when passing the conical intersection can assist the subsequent cis to trans isomerization of the C11=C12 double bond. The CC2 calculations also show that the torsion barrier for the twist of the retinyl C10-C11 single bond adjacent to the isomerization center almost vanishes for the excited state. Because of the reduced torsion barriers of the single bonds, the retinyl chain can easily deform in the excited state. Thus, the CC2 and TDDFT calculations suggest similar reaction pathways on the potential-energy surface of the excited state leading toward the conical intersection and resulting in a cis to trans isomerization of the retinal chromophore. According to the CC2 calculations the cis to trans isomerization mechanism does not involve any significant torsion motion of the beta-ionone ring.  相似文献   

3.
Excited-state reaction paths and the corresponding energy profiles of 2-(2'-hydroxyphenyl)benzotriazole (TIN-H) have been determined with the CC2 (simplified singles-and-doubles coupled-cluster) ab initio method. Hydrogen transfer along the intramolecular hydrogen bond, torsion of the aromatic rings and pyramidization of the central nitrogen atom are identified as the most relevant photochemical reaction coordinates. The keto-type planar S(1) state reached by barrierless intramolecular hydrogen transfer is found to be unstable with respect to torsion. The latter mode, together with a moderate pyramidization of the central nitrogen atom, provides barrierless access to a S(1)-S(0) conical intersection. Only the pi-type orbitals of the aromatic rings are involved in the open-shell structures. The S(1)-S(0) conical intersection, which occurs for perpendicular geometry of the aromatic rings, is a pure biradical. From the conical intersection, a barrierless reaction path steers the system back to the enol-type minimum of the S(0) potential-energy surface, thus closing the photocycle. This photophysical pathway accounts for the remarkable photostability of the molecule.  相似文献   

4.
Indigo (1) is stable when exposed to ultraviolet light. We employ electronic structure calculations and nonadiabatic trajectory surface-hopping dynamics simulations to study the photoinduced processes and the photoprotection mechanism of an indigo model, bispyrroleindigo (2). Consistent with recent static ab initio calculations on 1 and 2 (Phys. Chem. Chem. Phys., 2011, 13, 1618), we find an efficient deactivation process that proceeds as follows. After vertical photoexcitation, the S(1)(ππ*) state undergoes an essentially barrierless intramolecular single proton transfer and relaxes to the minimum of an S(1) tautomer, which is structurally and energetically close to a nearby conical intersection that acts as a funnel to the S(0) state; after this internal conversion, a reverse single hydrogen transfer leads back to the equilibrium structure of the most stable S(0) tautomer. This deactivation process is completely dominant in our semiempirical OM2/MRCI nonadiabatic dynamics simulations. The other two mechanisms considered previously, namely excited-state intramolecular double proton transfer and trans-cis double bond isomerization, are not seen in any of the 325 trajectories of the present surface-hopping simulations. On the basis of the computed time-dependent populations of the S(1) state, we estimate an S(1) lifetime of about 700 fs for 2 in the gas phase.  相似文献   

5.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

6.
Excited state reaction paths and the corresponding energy profiles of salicylic acid have been determined with the CC2 method, which is a simplified version of singles-and-doubles coupled cluster theory. At crucial points of the potential energy hypersurfaces, single-point energy calculations have been performed with the CASPT2 method (second-order perturbation theory based on the complete active space self-consistent field reference). Hydrogen transfer along the intramolecular hydrogen bond as well as torsion and pyramidization of the carboxy group have been identified as the most relevant photochemical reaction coordinates. The keto-type planar S(1) state reached by barrierless intramolecular hydrogen transfer represents a local minimum of the S(1) energy surface, which is separated by a very low barrier from a reaction path leading to a low-lying S(1)-S(0) conical intersection via torsion and pyramidization of the carboxy group. The S(1)-S(0) conical intersection, which occurs for perpendicular geometry of the carboxy group, is a pure biradical. From the conical intersection, a barrierless reaction path steers the system back to the two known minima of the S(0) potential energy surface (rotamer I, rotamer II). A novel structure, 7-oxa-bicyclo[4.2.0]octa-1(6),2,4-triene-8,8-diol, has been identified as a possible transient intermediate in the photophysics of salicylic acid.  相似文献   

7.
We use ab initio CASSCF and CASPT2 computations to construct the composite multistate relaxation path relevant to cycloocta-1,3,5,7-tetraene singlet photochemistry. The results show that an efficient population of the dark excited state (S(1)) takes place after ultrafast decay from the spectroscopic excited state (S(2)). A planar D(8)(h)-symmetric minimum represents the collecting point on S(1). Nonadiabatic transitions to S(0) appear to be controlled by two different tetraradical-type conical intersections, which are directly accessible from the S(1) minimum following specific excited-state reaction paths. The higher-energy conical intersection belongs to the same type of intersections previously documented in linear and cyclic conjugated hydrocarbons and features a triangular -(CH)(3)- kink. This point mediates both cis --> trans photoisomerization and cyclopropanation reactions. The lowest energy conical intersection has a boat-shaped structure. This intersection accounts for production of semibullvalene or for double-bond shifting. The mapping of both photochemical and thermal reaction paths (including also Cope rearrangements, valence isomerizations, ring inversions, and double-bond shifting) has allowed us to draw a comprehensive reactivity scheme for cyclooctatetraene, which rationalizes the experimental observations and documents the complex network of photochemical and thermal reaction path interconnections. The factors controlling the selection and accessibility of a number of conjugated hydrocarbon prototype conical intersections and ground-state relaxation channels are discussed.  相似文献   

8.
We present femto-to-millisecond studies of the photodynamics of seven types of indole-based squaraine molecules (SQs) in solvents of different H-bonding ability and viscosity. These SQs can be classified into two families: SQs with two carboxylic groups in the side indole groups (symmetrical SQs) and with only one carboxylic group (asymmetrical SQs). Steady-state absorption and fluorescence techniques show narrow absorption and emission bands, with a small Stokes shift (about 300 cm(-1)). The femtosecond transient absorption spectra give a very short (~100 fs) dynamics (assigned to IVR) and the associated spectra show two excited species assigned to two stereoisomers. A trans-cis photoisomerization occurs in a very fast time through a conical intersection. Pico-to-nanosecond emission experiments also reveal the presence of two fluorescing trans stereoisomers whose lifetimes show similar sensitivities to the nature of solvent. For example, lifetimes of 1.72, 0.46 and 0.29 ns were determined for the trans photoisomer of the SQ 41 in triacetin, dichloromethane and acetonitrile, respectively, reflecting the short decay of the S(1) state in highly polar and low viscous solvents. Flash photolysis experiments gave the transient absorption signals of the cis photoisomer that is formed after the twisting process at S(1). The cis-to-trans photoisomerization at the ground state happens in the μs time scale (1-4 μs), and it depends on the H-bonding ability and viscosity of the solvent. Thus, combining fs-ns and ns-μs experiments suggests that in the conical intersection region, only a small fraction of the twisted trans isomers are converted to the cis ones in the excited states. These results bring detailed and global insight into the large time window photodynamics of this family of SQs in solution.  相似文献   

9.
In the present paper, different electronic structure methods have been used to determine stationary and intersection structures on the ground (S(0)) and (1)ππ? (S(2)) states of 4-methylpyridine, which is followed by adiabatic and nonadiabatic dynamics simulations to explore the mechanistic photoisomerization of 4-methylpyridine. Photoisomerization starts from the S(2)((1)ππ?) state and overcomes a small barrier, leading to formation of the prefulvene isomer in the S(0) state via a S(2)∕S(0) conical intersection. The ultrafast S(2) → S(0) nonradiative decay and low quantum yield for the photoisomerization reaction were well reproduced by the combined electronic structure calculation and dynamics simulation. The prefulvene isomer was assigned as a long-lived intermediate and suggested to isomerize to 4-methylpyridine directly in the previous study, which is not supported by the present calculation. The nonadiabatic dynamics simulation and electronic structure calculation reveal that the prefulvene isomer is a short-lived intermediate and isomerizes to benzvalene form very easily. The benzvalene form was predicted as the stable isomer in the present study and is probably the long-lived intermediate observed experimentally. A consecutive light and thermal isomerization cycle via Dewar isomer was determined and this cycle mechanism is different from that reported in the previous study. It should be pointed out that formation of Dewar isomer from the S(2)((1)ππ?) state is not in competition with the isomerization to the prefulvene form. The Dewar structure observed experimentally may originate from other excited states.  相似文献   

10.
We have simulated the photodynamics of azobenzene by means of the Surface Hopping method. We have considered both the trans → cis and the cis → trans processes, caused by excitation in the n → π* band (S(1) state). To bring out the solvent effects on the excited state dynamics, we have run simulations in four different environments: in vacuo, in n-hexane, in methanol, and in ethylene glycol. Our simulations reproduce very well the measured quantum yields and the time dependence of the intensity and anisotropy of the transient fluorescence. Both the photoisomerization and the S(1) → S(0) internal conversion require the torsion of the N═N double bond, but the N-C bond rotations and the NNC bending vibrations also play a role. In the trans → cis photoconversion the N═N torsional motion and the excited state decay are delayed by increasing the solvent viscosity, while the cis → trans processes are less affected. The analysis of the simulation results allows the experimental observations to be explained in detail, and in particular the counterintuitive increase of the trans → cis quantum yield with viscosity, as well as the relationship between the excited state dynamics and the solvent effects on the fluorescence lifetimes and depolarization.  相似文献   

11.
The ground-, (1)(pipi*)-, and (3)(pipi*)-state potential-energy surfaces of 1,2-cyclononadiene and isomeric C(9)H(14) species, as well as 1-methyl-1,2-cyclononadiene and isomeric C(10)H(16) species were all mapped using CASSCF and the 6-31G(d) basis set. Theoretical results were found to be in good agreement with the available experimental observations for both 1,2-cyclononadiene and 1-methyl-1,2-cyclononadiene isomerization reactions under singlet and triplet direct or sensitized irradiation. Extremely efficient decay occurs from the first singlet excited state to the ground state through at least three different conical intersections (surface crossings). The first of these crossing points is accessed by a one-bond ring closure. From this conical intersection point (CI-A or CI-C), some possible subsequent ground-state reaction paths have been identified: 1) intramolecular C--H bond insertion to form the bicyclic photoproduct and 2) intramolecular C--H bond insertion to form tricyclic photoproducts. An excited state [1,3]-sigmatropic shift leads to the second conical intersection (CI-B or CI-E), which can give a three-bond cyclononyne species. Besides these, in the singlet photochemical reactions of 1-methyl-1,2-cyclononadiene, excited-state, one allenic C--H bond insertion leads to a third conical intersection (CI-D). Possible ground-state reaction pathways from this structure lead to the formation of a diene photoproduct or to transannular insertion photoproducts. Moreover, in the case of triplet 1,2-cyclononadiene and 1-methyl-1,2-cyclononadiene photoisomerization reactions, both chemical reactions will adopt a 1,3-biradical (T(1)/S(0)-1, T(1)/S(0)-2, and T(1)/S(0)-3), which may undergo intersystem crossings leading to the formation of tricyclic or bicyclic photoproducts. The results obtained allow a number of predictions to be made.  相似文献   

12.
The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)πσ? excited state with the bound (1)ππ? excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)ππ?-(1)πσ? and (1)πσ?-S(0) conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S(0), (1)ππ?, (1)πσ?) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)ππ? and (1)πσ? states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)σ/(2)π electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (ν(16a)) and ring-distortion (ν(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor.  相似文献   

13.
We employed the complete active space self‐consistent field (CASSCF) and its multistate second‐order perturbation (MS‐CASPT2) methods to explore the photochemical mechanism of 2‐hydroxyazobenzene, the molecular scaffold of Sudan I and Orange II dyes. It was found that the excited‐state intramolecular proton transfer (ESIPT) along the bright diabatic 1ππ* state is barrierless and ultrafast. Along this diabatic 1ππ* relaxation path, the system can jump to the dark 1nπ* state via the 1ππ*/1nπ* crossing point. However, ESIPT in this dark state is largely inhibited owing to a sizeable barrier. We also found two deactivation channels that decay 1ππ* keto and 1nπ* enol species to the ground state via two energetically accessible S1/S0 conical intersections. Finally, we encountered an interesting phenomenon in the excited‐state hydrogen‐bonding strength: it is reinforced in the 1ππ* state, whereas it is reduced in the 1nπ* state. The present work sets the stage for understanding the photophysics and photochemistry of Sudan I–IV, Orange II, Ponceau 2R, Ponceau 4R, and azo violet.  相似文献   

14.
Thio amino acids can be integrated into the backbone of peptides without significantly perturbing their structure. In this contribution we use ultrafast infrared and visible spectroscopy as well as state-of-the-art ab initio computations to investigate the photoisomerization of the trans form of N-methylthioacetamide (NMTAA) as a model conformational photoswitch. Following the S2 excitation of trans-NMTAA in water, the return of the molecule into the trans ground state and the formation of the cis isomer is observed on a dual time scale, with a fast component of 8-9 ps and a slow time constant of approximately 250 ps. On both time scales the probability of isomerization to the cis form is found to be 30-40%, independently of excitation wavelength. Ab initio CASPT2//CASSCF photochemical reaction path calculations indicate that, in vacuo, the trans-->cis isomerization event takes place on the S1 and/or T1 triplet potential energy surfaces and is controlled by very small energy barriers, in agreement with the experimentally observed picosecond time scale. Furthermore, the calculations identify one S2/S1 and four nearly isoenergetic S1/S0 conical intersection decay channels. In line with the observed isomerization probability, only one of the S1/S0 conical intersections yields the cis conformation upon S1-->S0 decay. A substantially equivalent excited-state relaxation results from four T1/S0 intersystem crossing points.  相似文献   

15.
We have studied the cis-->trans and trans-->cis photoisomerization of azobenzene after n-->pi* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined "on the fly" from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields.  相似文献   

16.
The ultrafast S(1)((1)ππ*) → S(0) deactivation process of thiophene in the gas phase has been simulated with the complete active space self-consistent field (CASSCF) based fewest switch surface hopping method. It was found that most of the calculated trajectories (~80%) decay to the ground state (S(0)) with an averaged time constant of 65 ± 5 fs. This is in good agreement with the experimental value of about 80 fs. Two conical intersections were determined to be responsible for the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. After thiophene is excited to the S(1)((1)ππ*) state in the Franck-Condon region, it quickly relaxes to the minimum of the S(1)((1)ππ*) state, then overcomes a small barrier near the conical intersection (CI((1)ππ*/(1)πσ*)), and eventually arrives at the minimum of one C-S bond fission (S(1)((1)πσ*)). In the vicinity of this minimum, the conical intersection (CI((1)πσ*/S(0))) funnels the electron population to the ground state (S(0)), completing the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. This decay mechanism matches well with previous experimental and theoretical studies.  相似文献   

17.
In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI) shows an entirely different photochemical behavior experimentally, since it mainly undergoes ultrafast intramolecular excited-state proton transfer, followed by S(1) → S(0) decay and ground-state reverse hydrogen transfer. We have chosen 4-(2-hydroxybenzylidene)-1H-imidazol-5(4H)-one (OHBI) to model the gas-phase photodynamics of such 2-hydroxy-substituted chromophores. We first use various electronic structure methods (DFT, TDDFT, CC2, DFT/MRCI, OM2/MRCI) to explore the S(0) and S(1) potential energy surfaces of OHBI and to locate the relevant minima, transition state, and minimum-energy conical intersection. These static calculations suggest the following decay mechanism: upon photoexcitation to the S(1) state, an ultrafast adiabatic charge-transfer induced excited-state intramolecular proton transfer (ESIPT) occurs that leads to the S(1) minimum-energy structure. Nearby, there is a S(1)/S(0) minimum-energy conical intersection that allows for an efficient nonadiabatic S(1) → S(0) internal conversion, which is followed by a fast ground-state reverse hydrogen transfer (GSHT). This mechanism is verified by semiempirical OM2/MRCI surface-hopping dynamics simulations, in which the successive ESIPT-GSTH processes are observed, but without cis-trans isomerization (which is a minor path experimentally with less than 5% yield). These gas-phase simulations of OHBI give an estimated first-order decay time of 476 fs for the S(1) state, which is larger but of the same order as the experimental values measured for OHBDI in solution: 270 fs in CH(3)CN and 230 fs in CH(2)Cl(2). The differences between the photoinduced processes of the 2- and 4-hydroxy-substituted chromophores are attributed to the presence or absence of intramolecular hydrogen bonding between the two rings.  相似文献   

18.
Optimal control simulation is used to examine the control mechanisms in the photodissociation of phenol within a two-dimensional, three-electronic-state model with two conical intersections. This model has two channels for H-atom elimination, which correspond to the (2)pi and (2)sigma states of the phenoxyl radical. The optimal pulse that enhances (2)sigma dissociation initially generates a wave packet on the S(1) potential-energy surface of phenol. This wave packet is bifurcated at the S(2)-S(1) conical intersection into two components with opposite phases because of the geometric phase effect. The destructive interference caused by the geometric phase effect reduces the population around the S(1)-S(0) conical intersection, which in turn suppresses nonadiabatic transitions and thus enhances dissociation to the (2)sigma limit. The optimal pulse that enhances S(0) dissociation, on the other hand, creates a wave packet on the S(2) potential-energy surface of phenol via an intensity borrowing mechanism, thus avoiding geometric phase effects at the S(2)-S(1) conical intersection. This wave packet hits the S(1)-S(0) conical intersection directly, resulting in preferred dissociation to the (2)pi limit. The optimal pulse that initially prepares the wave packet on the S(1) potential-energy surface (PES) has a higher carrier frequency than the pulse that prepares the wave packet on the S(2) PES. This counterintuitive effect is explained by the energy-level structure and the S(2)-S(1) vibronic coupling mechanism.  相似文献   

19.
The cis-trans photoisomerization of crystalline or powdered cis,cis-1,4-diphenyl-1,3-butadiene (cc-DPB) was studied at room temperature. The progress of the reaction was monitored by fluorescence spectroscopy, powder X-ray diffraction, 1H NMR and HPLC. High conversions (up to 90%) to the trans,trans isomer were observed in a crystal to crystal reaction. Formation of the cis,trans isomer, the sole product obtained in solution and in very viscous glassy media at 77 K is entirely suppressed in the solid state. The observed two-bond photoisomerization is explained by Warshel's bicycle-pedal photoisomerization mechanism (BP). The results are consistent with X-ray diffraction measurements, which have revealed that cc-DPB molecules exist in crystals in edge to face alternating arrays of two conformer structures whose phenyl rings deviate significantly from the plane of the central diene moiety ( approximately 40 degrees ). One of the conformers has the two phenyls in parallel planes and the other in roughly perpendicular planes. Least motion considerations suggest that the former should undergo the two-bond photoisomerization more easily, in agreement with observations that indicate that the reaction proceeds in discrete stages. Recently reported cis,cis- to trans,trans-muconate photoisomerizations in the solid state are proposed to also proceed via the BP mechanism. The reactions are consistent with the X-ray crystal structures of the cis,cis-muconate isomers.  相似文献   

20.
A combination of ultrafast time-resolved velocity map imaging (TR-VMI) methods and complete active space self-consistent field (CASSCF) ab initio calculations are implemented to investigate the electronic excited-state dynamics in aniline (aminobenzene), with a perspective for modeling (1)πσ* mediated dynamics along the amino moiety in the purine derived DNA bases. This synergy between experiment and theory has enabled a comprehensive picture of the photochemical pathways/conical intersections (CIs), which govern the dynamics in aniline, to be established over a wide range of excitation wavelengths. TR-VMI studies following excitation to the lowest-lying (1)ππ* state (1(1)ππ*) with a broadband femtosecond laser pulse, centered at wavelengths longer than 250 nm (4.97 eV), do not generate any measurable signature for (1)πσ* driven N-H bond fission on the amino group. Between wavelengths of 250 and >240 nm (<5.17 eV), coupling from 1(1)ππ* onto the (1)πσ* state at a 1(1)ππ*/(1)πσ* CI facilitates ultrafast nonadiabatic N-H bond fission through a (1)πσ*/S(0) CI in <1 ps, a notion supported by CASSCF results. For excitation to the higher lying 2(1)ππ* state, calculations reveal a near barrierless pathway for CI coupling between the 2(1)ππ* and 1(1)ππ* states, enabling the excited-state population to evolve through a rapid sequential 2(1)ππ* → 1(1)ππ* → (1)πσ* → N-H fission mechanism, which we observe to take place in 155 ± 30 fs at 240 nm. We also postulate that an analogous cascade of CI couplings facilitates N-H bond scission along the (1)πσ* state in 170 ± 20 fs, following 200 nm (6.21 eV) excitation to the 3(1)ππ* surface. Particularly illuminating is the fact that a number of the CASSCF calculated CI geometries in aniline bear an exceptional resemblance with previously calculated CIs and potential energy profiles along the amino moiety in guanine, strongly suggesting that the results here may act as an excellent grounding for better understanding (1)πσ* driven dynamics in this ubiquitous genetic building block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号