首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An overview of the theory of self-guided optical beams, spatial optical solitons supported by non-Kerr non-linearities, is presented. This includes bright and dark solitons in optical media with intensity-dependent non-linear response as well as two-component solitary waves supported by parametric wave mixing in quadratic or cubic media. The properties of non-linear spatially localized waves are discussed for qualitatively different types of soliton bearing non-integrable non-linear models, including the scalar model described by a generalized non-linear Schrödinger equation and the models of the second- and third-harmonic generation. Special attention is paid to the recent advances of the theory of soliton stability and soliton internal modes.  相似文献   

2.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

3.
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.  相似文献   

4.
We analyze second-harmonic generation (SHG) at a thin effectively quadratic nonlinear interface between two linear optical media. We predict multistability of SHG for both plane and localized waves, and also describe two-color localized photonic modes composed of a fundamental wave and its second harmonic coupled together by parametric interaction at the interface.  相似文献   

5.
We demonstrate that weak parametric interaction of a fundamental beam with its harmonic field in a Kerr medium can drastically modify the beam dynamics, giving rise to very complex bifurcation phenomena and quasi solitons. Most importantly, we reveal a novel physical mechanism of the collapse suppression in a bulk optical Kerr medium: parametric coupling to a weakly radiating harmonic field.  相似文献   

6.
We report on the first experimental observation of discrete vortex solitons in two-dimensional optically induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.  相似文献   

7.
We demonstrate that a weak defocusing Kerr effect in an optical medium with predominantly quadratic [or chi((2))] nonlinear response can eliminate the parametric modulational instability of plane waves, leading to the existence of stable two-wave dark and vortex spatial solitons.  相似文献   

8.
We find a new type of optical vector soliton that originates from trapping of a dipole mode by the soliton-induced waveguides. These solitons, which appear as a consequence of the vector nature of the two-component system, are more stable than the previously found optical vortex solitons and represent a new type of extremely robust nonlinear vector structure.  相似文献   

9.
We discover that a spatially localized gain supports stable vortex solitons in media with cubic nonlinearity and two-photon absorption. The interplay between nonlinear losses and gain in amplifying rings results in the suppression of otherwise ubiquitous azimuthal modulation instabilities of radially symmetric vortex solitons. We find that the topology of the gain profile imposes restrictions on the maximal possible charge of vortex solitons. Symmetry breaking occurs at high gain levels, resulting in the formation of necklace vortex solitons composed of asymmetric bright spots.  相似文献   

10.
A family of exact temporal solitary-wave solutions (dissipative solitons) to the equations governing second-harmonic generation in quadratically nonlinear optical waveguides, in the presence of linear bandwidth-limited gain at the fundamental harmonic and linear loss at the second harmonic, is found, and the existence domain for the solutions is delineated. Direct numerical simulations of the solitons demonstrate that, as well as the classical pulse solutions to the cubic Ginzburg-Landau equation, the dissipative solitons can propagate robustly over a considerable distance before the model's intrinsic instability leads to onset of "turbulence." Two-soliton bound states are also predicted and then found in the direct simulations. We estimate real values of the physical parameters necessary for the existence of the solitons predicted, and conclude that they can be observed experimentally. A promising application for the solitons is their use in closed-loop cavities.  相似文献   

11.
We introduce novel types of spatial vector soliton that can be generated in anisotropic optical media, such as tetragonal crystals with third-order nonlinear susceptibility. We demonstrate that these vector solitons provide a nontrivial generalization to both conventional vector solitons of birefringent cubic media and parametric solitons supported by third-order cascaded nonlinearities.  相似文献   

12.
We reveal the existence of asymmetric vortex solitons in ideally symmetric periodic lattices and show how such nonlinear localized structures describing elementary circular flows can be analyzed systematically using the energy-balance relations. We present the examples of rhomboid, rectangular, and triangular vortex solitons on a square lattice and also describe novel coherent states where the populations of clockwise and anticlockwise vortex modes change periodically due to a nonlinearity-induced momentum exchange through the lattice. Asymmetric vortex solitons are expected to exist in different nonlinear lattice systems, including optically induced photonic lattices, nonlinear photonic crystals, and Bose-Einstein condensates in optical lattices.  相似文献   

13.
We develop a general framework for understanding the characteristics of multi-frequency (multi-colour) parametric solitons. We identify two special classes of such solitons: cascaded parametric solitons, where the optical energy is shared between several harmonically-related frequency bands; and isolated-bandwidth solitons, where all of the optical energy is localized within a single frequency band. As an example, we consider the case of a five-colour isolated-bandwidth parametric soliton in a Kerr medium.  相似文献   

14.
We study light localization at a phase-slip defect created by two semi-infinite mismatched identical arrays of coupled optical waveguides. We demonstrate that the nonlinear defect modes possess the specific properties of both nonlinear surface modes and discrete solitons. We analyze the stability of the localized modes and their generation in both linear and nonlinear regimes.  相似文献   

15.
We demonstrate that families of vortex solitons are possible in a bidispersive three-dimensional nonlinear Schr?dinger equation. These solutions can be considered as extensions of two-dimensional dark vortex solitons which, along the third dimension, remain localized due to the interplay between dispersion and nonlinearity. Such vortex solitons can be observed in optical media with normal dispersion, normal diffraction, and defocusing nonlinearity.  相似文献   

16.
We demonstrate experimentally the formation of polychromatic single- and double-charge optical vortex solitons by employing a lithium niobate crystal as a nonlinear medium with defocusing nonlinearity. We study the wavelength dependence of the vortex core localization and observe self-trapping of polychromatic vortices with a bandwidth spanning over more than 70 nm for single-charge and 180 nm for double-charge vortex solitons.  相似文献   

17.
The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces ?? transitions, while the extraordinary component induces the ?? transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.  相似文献   

18.
Stable ring-profile vortex solitons in bessel optical lattices   总被引:1,自引:0,他引:1  
Stable ring-profile vortex solitons, featuring a bright shape, appear to be very rare in nature. However, here we show that they exist and can be made dynamically stable in defocusing cubic nonlinear media with an imprinted Bessel optical lattice. We find the families of vortex solitons and reveal their salient properties, including the conditions required for their stability. We show that the higher the soliton topological charge, the deeper the lattice modulation necessary for stabilization.  相似文献   

19.
张霞萍 《光学学报》2012,32(9):919001-217
利用强非局域非线性介质中傍轴光束传输的修正Snyder-Mitchell模型讨论了两束共线(即光束中心和传输方向都相同)拉盖尔-高斯型光孤子(CLGS)构成的涡旋光孤子传输过程。在一定条件下,涡旋光束在传输过程中,光束截面光斑发生旋转现象,但光束的束宽保持不变,称之为旋转涡旋光孤子。涡旋光孤子旋转的现象可以通过叠加光场中的古依相位来解释。结果展现了几个旋转涡旋光孤子在传输过程中的旋转现象和强非局域介质中多环形旋转涡旋光孤子的传输。  相似文献   

20.
《Physics letters. A》2020,384(11):126243
We analyze the dynamics of bright-bright solitons in two-component Bose-Einstein condensates (BECs) subject to parametric perturbations using the variational approach and direct numerical simulations. The system is described by a vector nonlinear Schrödinger equation (NLSE) appropriate to coupled multi-component BECs. A periodic variation of the inter-component coupling coefficient is used to explore nonlinear resonances and splitting of the coupled bright solitons. The analytical predictions are confirmed by direct numerical simulations of the vector NLSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号