首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A rapid, specific reversed phase HPLC method has been developed for simultaneous determination of olanzapine and fluoxetine in their formulations. Chromatographic separation of these two pharmaceuticals was carried out on an Inertsil C18 reversed phase column (150 mm × 4.6 mm, 5 μm) with a 40:30:30 (v/v/v) mixture of 9.5 mM sodium dihydrogen phosphate (pH adjusted to 6.8 ± 0.1 with triethylamine), acetonitrile and methanol as mobile phase. The flow rate 1.2 mL min−1 and the analytes are monitored at 225 nm. Paroxetine was used as internal standard. The assay results were linear from 25 to 75 μg mL−1 for olanzapine (r 2 ≥ 0.995) and 100–300 μg mL−1 for fluoxetine (r 2 ≥ 0.995), showed intra- and inter-day precision less than 1.0%, and accuracy of 97.7–99.1% and 97.9–99.0%. LOQ was 0.005 and 0.001 μg mL−1 for olanzapine and fluoxetine, respectively. Separation was complete in less than 10 min. Validation of the method showed it to be robust, precise, accurate and linear over the range of analysis.  相似文献   

2.
A sensitive and reliable ion-paired high-performance liquid chromatographic method has been established for the simultaneous quantification of six major active ingredients, namely baicalin, baicalein, wogonin, oxysophocarpine, oxymatrine and matrine in the Chinese herbal preparation, Sanwu-Huangqin-Tang. HPLC analyses were performed on a Phenomenex luna C18 column with mobile phase of methanol–acetonitrile–aqueous phosphoric acid at a flow rate of 0.9 mL min−1. The complete separation was achieved within 35 min for the six target constituents. A good linear regression relationship between peak-areas and concentrations was obtained over the range of 12.10–242.0 μg*mL−1 for baicalin, 5.05–101.0 μg*mL−1 for baicalein, 0.95–19.0 μg*mL−1 for wogonin, 2.75–55.0 μg*mL−1 for oxysophocarpin, 2.75–55.0 μg*mL−1 for oxymatrine and 4.90–98.0 μg*mL−1 for matrine, respectively. The repeatability was evaluated by intra- and inter-day assays with relative standard deviation (RSD) being less than 5.1%. The recoveries, measured at three concentration levels, varied from 93.8 to 102.1%. The assay was successfully applied for determination of six bioactive compounds in Sanwu-Huangqin-Tang. The interaction of chemical constituents was observed when the herbs were used in compatibility. The results indicated that the developed assay method was rapid, accurate and could be readily utilized as a quality control method for Sanwu-Huangqin-Tang.  相似文献   

3.
A rapid and sensitive liquid chromatography-tandem mass spectrometry assay was developed for the determination of a novel histone deacetylase inhibitor, cyclo{(2S)-2-amino-8-[(aminocarbonyl)hydrazono]decanoyl-1-l-tryptophyl-l-isoleucyl-(2R)-2-piperidinecarbonyl} (SD-2007), in rat serum. The mobile phase consisted of acetonitrile and ammonium formate (10 mM) (85:15 v/v), and the flow rate was 0.25 mL min−1. Chromatographic separations were achieved by isocratic elution on a C18 column. Multiple reaction monitoring was based on the transition of m/z = 681.8 → 83.6 for SD-2007 and 372.1 → 176.1 for trazodone (internal standard). A linearity was observed over a concentration range from 2 to 1,000 ng mL−1 (r 2 > 0.999), with the lower limit of quantification at 2 ng mL−1 with 100 μL of rat serum. The mean intra- and inter-day assay accuracy ranged from 98.5–109.7% to 95.2–102.7%, respectively, and the mean intra- and inter-day precision was between 4.3–11.3% and 2.9–13.3%. The developed assay was applied to a pharmacokinetic study of SD-2007 in rats after intravenous injection (dose 4 mg kg−1).  相似文献   

4.
Aidi injection is a clinical medicine used in China for the treatment of cancer. Calycosin-7-O-β-d-glucoside is the main effective components of the formulas. In this study, a high performance liquid chromatographic (LC) method was developed to quantify calycosin-7-O-β-d-glucoside in rat plasma using a liquid–liquid extraction and ultraviolet (UV) absorbance detection. LC analysis was performed on a Diamonsil C18 column (200 × 4.6 mm i.d., 5 μm particle size) with isocratic mobile phase consisting of acetonitrile–0.05% phosphoric acid (19.5:80.5, v/v) of a flow rate of 1.0 mL min−1. The linear range was 0.11–17.6 μg mL−1 and the low quantification limit was 0.11 μg mL−1 (S/N = 10). The intra- and inter-day relative standard deviations (RSD) in the measurement of quality control (QC) samples 0.11, 0.22, 1.32 and 8.80 μg mL−1 ranged from 4.1 to 6.3 and 4.3 to 6.2%, respectively. The accuracy was from −6.7 to 4.3% in terms of relative error (RE). Calycosin-7-O-β-d-glucoside was stable in storage at −20 °C for 2 weeks and stable after three freeze–thaw cycles in rat plasma. This method was validated for specificity, accuracy, precision and was successfully applied to pharmacokinetic study of calycosin-7-O-β-d-glucoside in rat plasma after intravenous administration of Aidi lyophilizer.  相似文献   

5.
Summary A simple and rapid liquid chromatographic method has been developed for the determination of therapeutic levels of piperacillin (I) and ceftazidime (II) in human plasma. Plasma and p-propionamidophenol (internal standard) were precipitated with methanol (I) or 20% trichloroacetic acid (II). The supernatant was analysed on a 5 μm Spherisorb ODS C18 column with acetonitrile-0.05 M phosphate buffer pH 3.8 as mobile phase and ultraviolet detection at 254 nm. The calibration graph was linear from 10 to 250 μg mL−1, for (I), and from 5 to 200 μg mL−1 for (II). Intra and inter-day CV did no exceed 2.29% for (I), and were 10.76–11.13%–2.00–5.62 for (II) at concentrations of 10 μg mL−1 and 250 μg mL−1.  相似文献   

6.
A simple, rapid and reproducible HPLC method was developed and validated for the simultaneous determination of olmesartan (OLM) medoxomil and hydrochlorothiazide (HCT) in combined tablets. Chromatography was carried out on a 4.6 mm I.D × 200 mm, 5 μm cyano column with methanol–10 mM phosphoric acid containing 0.1% triethylamine (pH 2.5, 50:50 v/v) at a flow rate of 1.0 mL min−1 and UV detector was set at 260 nm. Valsartan (VAL) was used as internal standard (IS). A linear response was observed in the range of 0.2–6 μg mL−1 (r 2 = 0.9998) for OLM and 0.1–4 μg mL−1 (r 2 = 0.9999) for HCT, respectively. The method showed good recoveries (99.56% for OLM and 99.48% for HCT) and the relative standard deviation (RSD) values for intra- and inter-day precision were 0.70–1.59 and 0.80–2.00% for OLM and 1.20–1.37 and 1.63–1.93% for HCT, respectively. The developed method was applied successfully for quality control assay of OLM and HCT in combined tablets and in vitro dissolution studies.  相似文献   

7.
A reversed-phase liquid chromatographic (LC) method was developed for the assay of nitazoxanide (NTZ) in solid dosage formulations. An isocratic LC separation was performed on a Phenomenex Synergi Fusion C18 column (250 mm × 4.6 mm, i.d., 4 μm particle size) using a mobile phase of 0.1% o-phosphoric acid solution, pH 6.0: acetonitrile (45:55, v/v) at a flow rate of 1.0 mL min−1. Detection was achieved with a photodiode array detector at 240 nm. The detector response for NTZ was linear over the concentration range from 2 to 100 μg mL−1 (r = 0.9999). The specificity and stability-indicating capability of the method were proved using stress conditions. The RSD values for intra-day precision were less than 1.0% for tablets and powder for oral suspension. The RSD values for inter-day precision were 0.6 and 0.7% for tablets and powder for oral suspension. The accuracy was 100.4% (RSD = 1.8%) for tablets and 100.9% (RSD = 0.3%) for powder for oral suspension. The limits of quantitation and detection were 0.4 and 0.1 μg mL−1. There was no interference of the excipients on the determination of the active pharmaceutical ingredient. The proposed method was precise, accurate, specific, and sensitive. It can be applied to the quantitative determination of drug in tablets and powder for oral suspension.  相似文献   

8.
The objective of the current study was to develop and subsequently validate a simple, sensitive and precise reversed-phase LC method for the determination of ciprofloxacin hydrochloride in ophthalmic solution form. The chromatographic separation of ciprofloxacin hydrochloride was achieved on a Symmetry Waters C18 column using UV detection at 275 nm. The optimized mobile phase consisted of 2.5% acetic acid solution: methanol:acetonitrile (70:15:15, v/v/v). The proposed method provided linear responses within the concentration range 1.0–6.0 μg mL−1 for ciprofloxacin hydrochloride. Correlation coefficient (r) for the ciprofloxacin hydrochloride was 0.9994. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 5% in all instances. No interference from any components of pharmaceutical dosage forms was observed.  相似文献   

9.
S. Tatar Ulu 《Chromatographia》2006,64(7-8):447-451
A simple, selective, precise and accurate reversed phase-HPLC assay for analysis of gemfibrozil in tablets was developed and validated. Separation and quantification were achieved on a Phenomenex C18 column under isocratic conditions using a mobile phase (methanol:water, 80:20, v/v) maintained at 1.1 mL min−1. UV-detection was at 280 nm. Atorvastatin was selected as an internal standard. The standard curves were linear over the range of 0.5–3.0 μg mL−1 (r > 0.999). The limits of detection and quantification were 0.20 and 0.51 μg mL−1, respectively. The recoveries for gemfibrozil were above 99.01%. The intra-day and inter-day precision (RSD) for gemfibrozil were below 1.74 and 1.83%, respectively. No chromatographic interferences from the tablet excipients were found. The results of the developed procedure in tablets were compared with those of the reference method to assess gemfibrozil content. Statistical comparison of the results with the reference method using spectrofluorimetric method showed excellent agreement and proved no significant difference in accuracy and precision. This HPLC method is fast and simple for the analysis of gemfibrozil in pharmaceutical preparations.  相似文献   

10.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

11.
A simple high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of cefepime and cefazolin in human plasma and dialysate. For component separation, the method utilized a C18 column with an aqueous mobile phase of dibasic potassium hydrogen phosphate (pH 7.0) and methanol gradient at a flow rate of 1 mL min−1. The method demonstrated linearity from 2.0 to 100.0 μg mL−1 (r > 0.999) with detection limit of 1 μg mL−1 for both cefepime and cefazolin. The method was utilized for evaluation of plasma and dialysate samples in a clinical study evaluating the dialyzer clearance of cefepime and cefazolin using high-flux hemodialysis with varying blood flow rates in chronic kidney failure patients undergoing hemodialysis and peritoneal dialysis treatment.  相似文献   

12.
A high-performance liquid chromatography–UV method for determining DCJW concentration in rat plasma was developed. The method described was applied to a pharmacokinetics study of intramuscular injection in rats. The plasma samples were deproteinized with acetonitrile in a one-step extraction. The HPLC assay was carried out using a VP-ODS column and the mobile phase consisting of acetonitrile–water (80:20, v/v) was used at a flow rate of 1.0 mL min−1 for the effective eluting DCJW. The detection of the analyte peak area was achieved by setting a UV detector at 314 nm with no interfering plasma peak. The method was fully validated with the following validation parameters: linearity range 0.06–10 μg mL−1 (r > 0.999); absolute recoveries of DCJW were 97.44–103.46% from rat plasma; limit of quantification, 0.06 μg mL−1 and limit of detection, 0.02 μg mL−1. The method was further used to determine the concentration–time profiles of DCJW in the rat plasma following intramuscular injection of DCJW solution at a dose of 1.2 mg kg−1. Maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC) for DCJW were 140.20 ng mL−1 and 2405.28 ng h mL−1.  相似文献   

13.
A cheap, simple and rapid sample preparation method has been developed for quantification of ulifloxacin, the active metabolite of prulifloxacin in human plasma, by HPLC with fluorescence detection using lemefloxacin as the internal standard. One-step protein precipitation with 10% perchloric acid (2:1, v/v) on a 200 μL sample was used. The separation was performed at 30 °C on a C18 column using an eluent of acetonitrile-0.5% triethylamine buffer. The compounds were monitored at λ ex of 280 nm, λ em of 425 nm. The calibration curve for ulifloxacin in human plasma was linear over the range 0.01–1.00 μg mL−1. The lower limit of quantification is 0.01 μg mL−1. The intra- and inter-day precision ranged from 3.0 to 6.7%, respectively. The method had been used for clinical pharmacokinetic studies of prulifloxacin formulation product after oral administration to healthy volunteers. Jun Wen and Zhenyu Zhu have equal contribution to this work.  相似文献   

14.
A simple, rapid and selective RP-HPLC method was developed and validated for the determination of ketorolac and five piperazinylalkyl ester prodrugs. A binary isocratic mobile phase composed of a mixture of 65:35 (v/v) 0.02 M phosphate buffer (pH 5.4) and acetonitrile was used on a C18 column (125 × 4 mm, 5 μm). The injection volume was 25 μL and the detection wavelength was 314 nm and the flow rate was 1.5 mL min−1. The method exhibited excellent linearity with R 2 of no less than 0.999 and intra-assay and inter-assay precision that were less than the maximum amount allowed according to Horwitz equation. The accuracy was found to be within the allowed ±15%. The limits of detection for the analytes were between 0.060 and 0.220 μg mL−1 and the limits of quantification were between 0.183 and 0.667 μg mL−1. This method was used successfully for the study of the solubility, stability and partition coefficients of piperazinylalkyl ester prodrugs of ketorolac.  相似文献   

15.
A pre-column derivatized high-performance liquid chromatographic (HPLC) method with ultraviolet-visible detection was developed to measure the concentrations of spectinomycin in fermentation broth. Derivatization reagents, 2,4-dinitrophenylhydrazine in acetonitrile (5 mg mL−1) and trifluoroacetic acid in acetonitrile (0.8 mol L−1), were added to an aliquot of the fermentation broth, and the mixture was incubated for 60 min at 70°C. The resulting derivative was separated from other compounds by isocratic elution in a reversed-phase column Zorbax SB-C18 (250 mm × 4.6 mm, 5 μm). Mobile phase consisted of acetonitrile, tetrahydrofuran, and water (φ r = 40: 35: 25) and the flow rate was 1.0 mL min−1. The detection wavelength was 415 nm. The standard curve for spectinomycin sulfate was linear with correlation coefficients of 0.9997 in the range of 25 μg mL−1 to 600 μg mL−1. The relative standard deviation values ranged from 0.43 % to 2.18 % depending on the concentration of samples. The average recovery was 101.5 %. The limit of detection was 50 ng mL−1.  相似文献   

16.
A sensitive and specific liquid chromatographic method with electrospray ionization mass spectrometry (LC–ESI-MS) has been developed and validated for identification and quantification of mitiglinide in human urine. A simple liquid–liquid extraction procedure was followed by separation on a C18 column with gradient elution, and detection using a single-quadrupole mass spectrometer in selected-ion-monitoring (SIM) mode. The method was tested using six different batches of urine. Linearity was established for the mitiglinide concentrations in the range 0.005–1.0 μg mL−1, with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. Intra- and inter-day precision (as RSD, %) was below 10% and accuracy for mitiglinide ranged from 85 to 115%. The lower limit of quantification was reproducible at 0.002 μg mL−1 for 500 μL urine. The proposed method enables unambiguous identification and quantification of mitiglinide in pre-clinical and clinical studies.  相似文献   

17.
Guanidinoacetate methyltransferase deficiency is a recently discovered inborn defect of creatine biosynthesis which reduces serum creatinine concentrations to as low as 0.58 μg mL−1 (or 0.00058 μg mL−1 after 1,000-fold dilution). To measure ultra trace levels of creatinine in diluted samples, molecularly imprinted solid-phase extraction (MISPE) and molecularly imprinted polymer (MIP) sensor techniques have been found to be inadequate. A combination of these techniques (i.e. MISPE hyphenated with use of an MIP-sensor), reported in this paper, has been found to be highly suitable for direct assay of creatinine in highly diluted human blood serum without complicated pretreatment of the sample. The proposed technique has the potential to enhance the sensitivity of creatinine measurement from μg mL−1 to ng mL−1 in highly dilute aqueous samples in which the concentrations of interfering constituents are reduced to negligible levels. In this work the sensitivity to creatinine was found to be improved compared with that of the MIP-sensor method alone (limit of detection, LOD, 0.00149 μg mL−1). After preconcentration by MISPE and use of the sensor the detection limit for creatinine was as low as 0.00003 μg mL−1 (RSD = 0.94%, S/N = 3; 50-fold preconcentration factor) in aqueous samples.  相似文献   

18.
A specific, sensitive and precise liquid chromatographic assay method was established using LC-MS for the determination of acyclovir (ACV) in aqueous humor (AH), which was directly injected onto an Inertsil ODS-3 C18 column without any pretreatment. The Agilent 1100 series LC–MS system was operated under the electrospray ionization mode (ESI). The analyte was separated from endogenous substances with a mobile phase of methanol: water: acetic acid (5:95:0.1, v/v) at a flow-rate of 0.3mL min−1. A linear response was observed over the concentration range from 5 to 50ng mL−1 (r=0.9993). Intra- and inter-day coefficients of variation were in the ranges 5.2–9.0% and 5.8–8.2%, respectively. The recovery was > 91.0%, and the limit of detection was approximate 1ng mL−1. The pharmacokinetics of topically applied eye-drop and thermosetting gel were compared in rabbits utilizing the present method, the results demonstrated that LC-MS was a powerful tool for the detection of ACV in AH.  相似文献   

19.
An isocratic high-performance liquid chromatographic method has been developed for assay of ceftiofur sodium in drug substance and in sterile powder for injection. Chromatography was performed on a 250 mm × 4.6 mm, 5 μm particle, C18 column with a 78:22 (v/v) mixture of 0.02 m disodium hydrogen phosphate buffer (pH adjusted to 6.0 with 85% orthophosphoric acid) and acetonitrile as mobile phase, at a flow rate of 1.0 mL min−1. The separation was monitored by UV detection at 292 nm. Validation of the method for linearity and range, intra- and inter-day precision, accuracy, specificity, recovery, robustness, and limits of quantification and detection yielded good results. The calibration plot was linear from 20.0–120.0 μg mL−1 and the correlation coefficient was 0.9999. It was shown that ceftiofur was degraded under acidic, alkaline, oxidative, and photolytic conditions. The method was found to be stability-indicating and could be used for routine analysis of ceftiofur sodium for injection.  相似文献   

20.
Summary A high-performance liquid chromatographic method, with 9-anthryldiazomethane as derivatizing agent, has been developed for the simultaneous determination ofN-carbamoyl aspartate andl-dihydroorotate in serum. Sample preparation for 1 mL serum was by simple liquid-liquid extraction and then derivatization. The compounds were separated on a Luna C18(2) column by use of a gradient prepared from acetonitrile and 10 mM sodium acetate buffer, pH 6.0, and fluorimetric detection was performed at excitation and emission wavelengths of 365 nm and 412 nm, respectively. The response was found to be linearly dependent on concentration between 0.8 and 60 μg mL−1 forl-dihydrooratate and between 0.9 and 90 μg mL−1 forN-carbamoyl aspartate; the mean recovery rates were 50 and 51%, respectively. The limits of detection and quantification were 0.33 μg mL−1 and 0.6 μg mL−1, respectively, forl-dihydroorotate and 0.4 μg mL−1 and 0.7 μg mL−1 forN-carbamoyl aspartate. This method can be used to assess accumulation ofN-carbamoyl aspartate andl-dihydroorotate in body fluids in situations where cellular pyrimidine de novo synthesis is impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号