首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Brownian hydrodynamic simulation techniques, we study single polymers in shear. We investigate the effects of hydrodynamic interactions, excluded volume, chain extensibility, chain length and semiflexibility. The well-known stretching behavior with increasing shear rate [(g)\dot] \dot{{\gamma}} is only observed for low shear [(g)\dot] \dot{{\gamma}} < [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} , where [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} is the shear rate at maximum polymer extension. For intermediate shear rates [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} < [(g)\dot] \dot{{\gamma}} < [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} the radius of gyration decreases with increasing shear with minimum chain extension at [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} . For even higher shear [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} < [(g)\dot] \dot{{\gamma}} the chain exhibits again shear stretching. This non-monotonic stretching behavior is obtained in the presence of excluded-volume and hydrodynamic interactions for sufficiently long and inextensible flexible polymers, while it is completely absent for Gaussian extensible chains. We establish the heuristic scaling laws [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} ∼ N -1.4 and [(g)\dot]min \dot{{\gamma}}^{{\min}}_{} ∼ N 0.7 as a function of chain length N , which implies that the regime of shear-induced chain compression widens with increasing chain length. These scaling laws also imply that the chain response at high shear rates is not a universal function of the Weissenberg number Wi = [(g)\dot] \dot{{\gamma}} t \tau anymore, where t \tau is the equilibrium relaxation time. For semiflexible polymers a similar non-monotonic stretching response is obtained. By extrapolating the simulation results to lengths corresponding to experimentally studied DNA molecules, we find that the shear rate [(g)\dot]max \dot{{\gamma}}^{{\max}}_{} to reach the compression regime is experimentally realizable.  相似文献   

2.
The third-order elastic modulus of α-Fe were calculated based on the computation of lattice sums. The lattice sums were determined using an integer rational basis of invariants composed by vectors connecting equilibrium atomic positions in the crystal lattice. Irreducible interactions within clusters consisting of atomic pairs and triplets were taken into account in performing the calculations. Comparison with experimental data showed that the potential can be written in the form of e9 = - ?i,k A19 rik - 6 + ?i,k A29 rik - 12 + ?i,k,l Q9 I9 - 1\varepsilon _9 = - \sum\nolimits_{i,k} {A_{19} r_{ik}^{ - 6} } + \sum\nolimits_{i,k} {A_{29} r_{ik}^{ - 12} + \sum\nolimits_{i,k,l} {Q_9 I_9^{ - 1} } }, where I9 = [(r)\vec]ik2 [ ( [(r)\vec]ik [(r)\vec]kl )2 + ( [(r)\vec]li [(r)\vec]ik )2 ] + [(r)\vec]kl2 [ ( [(r)\vec]ik [(r)\vec]kl )2 + ( [(r)\vec]kl [(r)\vec]li )2 ] + [(r)\vec]li2 [ ( [(r)\vec]li [(r)\vec]ik )2 + ( [(r)\vec]kl [(r)\vec]li )2 ]I_9 = \vec r_{ik}^2 \left[ {\left( {\vec r_{ik} \vec r_{kl} } \right)^2 + \left( {\vec r_{li} \vec r_{ik} } \right)^2 } \right] + \vec r_{kl}^2 \left[ {\left( {\vec r_{ik} \vec r_{kl} } \right)^2 + \left( {\vec r_{kl} \vec r_{li} } \right)^2 } \right] + \vec r_{li}^2 \left[ {\left( {\vec r_{li} \vec r_{ik} } \right)^2 + \left( {\vec r_{kl} \vec r_{li} } \right)^2 } \right]. If the values of [(r)\vec]ik\vec r_{ik} are scaled in half-lattice constant units, then A19 = 1.22 ë t9 û GPa, A29 = 5.07 ×102 ë t15 û GPa, Q9 = 5.31 ë t9 û GPaA_{19} = 1.22\left\lfloor {\tau ^9 } \right\rfloor GPa, A_{29} = 5.07 \times 10^2 \left\lfloor {\tau ^{15} } \right\rfloor GPa, Q_9 = 5.31\left\lfloor {\tau ^9 } \right\rfloor GPa, and τ = 1.26 ?. It is shown that the condition of thermodynamic stability of a crystal requires that we allow for irreducible interactions in atom triplets in at least four coordination spheres. The analytical expressions for the lattice sums determining the contributions from irreducible interactions in the atom triplets to the second- and third-order elastic moduli of cubic crystals in the case of interactions determined by I 9 are presented in the appendix.  相似文献   

3.
Two phenomenological models of Λ, viz. L ~ ([(a)\dot]/a)2\Lambda \sim (\dot{a}/a)^{2} and L ~ [(a)\ddot]/a\Lambda \sim \ddot{a}/a are studied under the assumption that G is a time-variable parameter. Both models show that G is inversely proportional to time as suggested earlier by others including Dirac. The models considered here can be matched with observational results by properly tuning the parameters of the models. Our analysis shows that L ~ [(a)\ddot]/a\Lambda \sim \ddot{a}/a model corresponds to a repulsive situation and hence correlates with the present status of the accelerating Universe. The other model L ~ ([(a)\dot]/a)2\Lambda \sim (\dot{a}/a)^{2} is, in general, attractive in nature. Moreover, it is seen that due to the combined effect of time-variable Λ and G the Universe evolved with acceleration as well as deceleration. This later one indicates a Big Crunch.  相似文献   

4.
This paper starts with a self-contained discussion of the so-called Akulov–Volkov action SAV\mathcal{S}_{\mathrm{AV}}, which is traditionally taken to be the leading-order action of the Goldstino field. Explicit expressions for SAV\mathcal{S}_{\mathrm{AV}} and its chiral version SAVch\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} are presented. We then turn to the issue on how these actions are related to the leading-order action SNL\mathcal{S}_{\mathrm{NL}} proposed in the newly proposed constrained superfield formalism. We show that SNL\mathcal{S}_{\mathrm{NL}} may yield SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} or a totally different action SKS\mathcal{S}_{\mathrm{KS}}, depending on how the auxiliary field in the former is integrated out. However, SKS\mathcal{S}_{\mathrm{KS}} and SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} always yield the same S-matrix elements, as one would have expected from general considerations in quantum field theory.  相似文献   

5.
A Coulomb-modified matrix of scattering amplitudes (an [(F)\tilde]\tilde F matrix) is considered for the case of two coupled channels of elastic scattering of charged particles with different orbital angular momenta (l 1 and l 2 = l 1 + 2). Matrix elements of the [(F)\tilde]\tilde F matrix are expressed in terms of the matrix elements of a [(K)\tilde] - 1\tilde K^{ - 1} matrix inverse to a modified reaction K matrix. The elements of the [(K)\tilde] - 1\tilde K^{ - 1} matrix are written as expansions that are generalizations of single-channel effective range expansion with allowance for the Coulomb interaction. If a system of colliding particles involves a bound state, the analytic continuation of these expansions into the region of negative energies makes it possible to obtain both the position of the pole corresponding to the bound state and the scattering amplitude residues in this pole, in terms of which the corresponding vertex constants and asymptotic normalization coefficients are expressed.  相似文献   

6.
Analytical and numerical calculations show that a putative temporal variation of the speed of light c, with the meaning of space-time structure constant c ST, assumed to be linear over timescales of about one century, would induce a secular precession of the longitude of the pericenter v{\varpi} of a test particle orbiting a spherically symmetric body. By comparing such a predicted effect to the corrections D[(v)\dot]{\Delta\dot\varpi} to the usual Newtonian/Einsteinian perihelion precessions of the inner planets of the Solar System, recently estimated by E.V. Pitjeva by fitting about one century of modern astronomical observations with the standard classical/relativistic dynamical force models of the EPM epehemerides, we obtained [(c)\dot]/c = (0.5±2)×10-7 yr-1{\dot c/c =(0.5\pm 2)\times 10^{-7} {\rm yr}^{-1}} . Moreover, the possibility that [(c)\dot]/c 1 0{\dot c/c\neq 0} over the last century is ruled out at 3−12σ level by taking the ratios of the perihelia for different pairs of planets. Our results are independent of any measurement of the variations of other fundamental constants which may be explained by a variation of c itself (with the meaning of electromagnetic constant c EM). It will be important to repeat such tests if and when other teams of astronomers will estimate their own corrections to the standard Newtonian/Einsteinian planetary perihelion precessions with different ephemerides.  相似文献   

7.
The properties of asymmetric nuclear matter for a wide range of densities and asymmetric parameters are investigated within the lowest-order-constrained variational (LOCV) method by employing the relativistic Hamiltonian with a potential which has been fitted relativistically to N-N phase shifts ( [(v)\tilde]14 \tilde{{v}}_{{14}}^{} and to the AV14interaction. Like our previous work on symmetric nuclear matter, the boost interaction corrections as well as the relativistic one-body and two-body kinetic corrections are calculated. The various properties of asymmetric nuclear matter such as the symmetry energy, the saturation energy and the validity of the a2 \alpha^{2}_{} law, etc., are examined. The symmetry energy is reduced by about 7MeV when we use [(v)\tilde]14 \tilde{{v}}_{{14}}^{} instead of its non-relativistic version, i.e. the AV14interaction. The results are compared with other many-body calculations.  相似文献   

8.
A five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as Gt −(1−ω) whereas the variation for the cosmological constant follows as Λ∼t −2, L ~ ([(R)\dot]/R)2\Lambda \sim (\dot{R}/R)^{2} and L ~ [(R)\ddot]/R\Lambda \sim \ddot{R}/R where ω is the equation of state parameter and R is the scale factor.  相似文献   

9.
Spin density matrices of neutron resonance states of a compound nucleus formed in the reaction of capture of a polarized neutron by a non-oriented target nucleus for different directions of neutron polarization vector are constructed within the quantum fission theory. The obtained spin matrices are used to calculate T-odd asymmetries in differential cross sections of ternary nuclear fission with the emission of different third particles. It is demonstrated that the expressions for T-odd asymmetries in the cases of neutron polarization direction [(p)\vec]n\vec p_n along the x and y axes in the laboratory reference frame differ by the values of the unified correlator of the form ( [(p)\vec]n ,[ [(k)\vec]LF ,[(k)\vec]3 ] )\left( {\vec p_n ,\left[ {\vec k_{LF} ,\vec k_3 } \right]} \right) (where [(k)\vec]LF\vec k_{LF} and [(k)\vec]3\vec k_3 are the wave vectors of a light fission fragment and the third particle, respectively), and are transformed into one another if the laboratory reference frame in which [(p)\vec]n\vec p_n is directed along the x axis is rotated to a laboratory reference frame in which [(p)\vec]n\vec p_n is directed along the y axis. It is shown that T-odd TRI and ROT asymmetries are associated, respectively, with the odd and even components of the amplitudes of the angular distribution of third particles perturbed by the collective rotation of a polarized fissile nucleus, and each of these amplitudes can be considerably amplified (or suppressed) relative to one another due to the interference from fission amplitudes of pairs of neutron resonances sJ s and sJ s′ .  相似文献   

10.
Many amorphous glassy materials exhibit complex spatio-temporal mechanical response and rheology, characterized by an intermittent stress strain response and a fluctuating velocity profile. Under quasistatic and athermal deformation protocols this heterogeneous plastic flow was shown to be composed of plastic events of various sizes, ranging from local quadrupolar plastic rearrangements to system spanning shear bands. In this paper, through numerical study of a 2D Lennard-Jones amorphous solid, we generalize the study of the heterogeneous dynamics of glassy materials to the finite shear rate ( [(g)\dot] \dot{{\gamma}} 1 \neq 0 and temperature case (T 1 \neq 0 . In practice, we choose an effectively athermal limit (T ∼ 0 and focus on the influence of shear rate on the rheology of the glass. In line with previous works we find that the model Lennard-Jones glass follows the rheological behavior of a yield stress fluid with a Herschel-Bulkley response of the form, s \sigma = sY \sigma_{{Y}}^{} + c 1 [(g)\dot]b \dot{{\gamma}}^{{\beta}}_{} . The global mechanical response obtained through the use of Molecular Dynamics is shown to converge in the limit [(g)\dot] \dot{{\gamma}} ? \rightarrow 0 to the quasistatic limit obtained with an energy minimization protocol. The detailed analysis of the plastic deformation at different shear rates shows that the glass follows different flow regimes. At sufficiently low shear rates the mechanical response reaches a shear-rate-independent regime that exhibits all the characteristics of the quasistatic response (finite-size effects, cascades of plastic rearrangements, yield stress, ...). At intermediate shear rates the rheological properties are determined by the externally applied shear rate and the response deviates from the quasistatic limit. Finally at higher shear the system reaches a shear-rate-independent homogeneous regime. The existence of these three regimes is also confirmed by the detailed analysis of the atomic motion. The computation of the four-point correlation function shows that the transition from the shear-rate-dominated to the quasistatic regime is accompanied by the growth of a dynamical cooperativity length scale x \xi that is shown to diverge with shear rate as x \xi μ \propto [(g)\dot]-n \dot{{\gamma}}^{{-\nu}}_{} , with n \nu ∼ 0.2 -0.3. This scaling is compared with the prediction of a simple model that assumes the diffusive propagation of plastic events.  相似文献   

11.
For a compact connected orientablen-manifoldM, n 3, we study the structure ofclassical superspace ,quantum superspace ,classical conformal superspace , andquantum conformal superspace . The study of the structure of these spaces is motivated by questions involving reduction of the usual canonical Hamiltonian formulation of general relativity to a non-degenerate Hamiltonian formulation, and to questions involving the quantization of the gravitational field. We show that if the degree of symmetry ofM is zero, thenS,S 0,C, andC 0 areilh orbifolds. The case of most importance for general relativity is dimensionn=3. In this case, assuming that the extended Poincaré conjecture is true, we show that quantum superspaceS 0 and quantum conformal superspaceC 0 are in factilh-manifolds. If, moreover,M is a Haken manifold, then quantum superspace and quantum conformal superspace arecontractible ilh-manifolds. In this case, there are no Gribov ambiguities for the configuration spacesS 0 andC 0. Our results are applicable to questions involving the problem of thereduction of Einstein's vacuum equations and to problems involving quantization of the gravitational field. For the problem of reduction, one searches for a way to reduce the canonical Hamiltonian formulation together with its constraint equations to an unconstrained Hamiltonian system on a reduced phase space. For the problem of quantum gravity, the spaceC 0 will play a natural role in any quantization procedure based on the use of conformal methods and the reduced Hamiltonian formulation.  相似文献   

12.
In this paper, two modified Ricci models are considered as the candidates of unified dark matter–dark energy. In model one, the energy density is given by rMR=3Mpl(aH2+b[(H)\dot])\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\alpha H^{2}+\beta\dot{H}), whereas, in model two, by rMR=3Mpl(\fraca6 R+g[(H)\ddot]H-1)\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\frac{\alpha}{6} R+\gamma\ddot{H}H^{-1}). We find that they can explain both dark matter and dark energy successfully. A constant equation of state of dark energy is obtained in model one, which means that it gives the same background evolution as the wCDM model, while model two can give an evolutionary equation of state of dark energy with the phantom divide line crossing in the near past.  相似文献   

13.
It is shown that the Lie and the Noether symmetries of the equations of motion of a dynamical system whose equations of motion in a Riemannian space are of the form [(x)\ddot]i+Gjki[(x)\dot]j[(x)\dot] k+f(xi)=0{\ddot{x}^{i}+\Gamma_{jk}^{i}\dot{x}^{j}\dot{x} ^{k}+f(x^{i})=0} where f(x i ) is an arbitrary function of its argument, are generated from the Lie algebra of special projective collineations and the homothetic algebra of the space respectively. Therefore the computation of Lie and Noether symmetries of a given dynamical system in these cases is reduced to the problem of computation of the special projective algebra of the space. It is noted that the Lie and Noether symmetry vectors are common to all dynamical systems moving in the same background space. The selection of the vectors which are Lie/Noether symmetries for a given dynamical system is done by means of a set of differential conditions involving the vectors and the potential function defining the dynamical system. The general results are applied to a number of different applications concerning (a) The motion in Euclidean space under the action of a general central potential (b) The motion in a space of constant curvature (c) The determination of the Lie and the Noether symmetries of class A Bianchi type hypersurface orthogonal spacetimes filled with a scalar field minimally coupled to gravity (d) The analytic computation of the Bianchi I metric when the scalar field has an exponential potential.  相似文献   

14.
In the present work, the alignment mechanism of silver nanoparticles on the surface of a heated ion-exchanged glass, in presence of an external uniform DC electric field ([(E)\vec]0)(\vec{E}_{0}) parallel to the surface of the sample, is studied. At high temperature, the ionic silver clusters reduce to neutral ones and move toward the surface. Simultaneously, due to the external electric field the clusters interact with other ones as induced electrical dipoles. This leads to alignment of nanoparticles along [(E)\vec]0\vec{E}_{0} and formation of a chain-like conductive structure, which makes the sample dichroic. Taking into account the matrix surface viscosity and using the method of image dipoles to model the influence of the substrate on the dipole interactions, we give an interpretation about the relative equilibrium positions of generated nanoclusters and consequently the formation mechanism of the chain-like structure on the surface of the ion-exchanged glass.  相似文献   

15.
We construct a two-parameter deformed SUSY algebra for the system of n ordinary fermions and n(q 1,q 2)-deformed bosons called Fibonacci oscillators with -symmetry. We then analyze the Fock space representation of the algebra constructed. We obtain the total deformed Hamiltonian and the energy levels together with their degeneracies for the system. We also consider some physical applications of the Fibonacci oscillators with -symmetry, and discuss the main reasons to consider two distinct deformation parameters.  相似文献   

16.
We discuss the algebras, representations, and thermodynamics of quantum group bosonic gas models with two different symmetries: GL p,q (2) and . We establish the nature of the basic numbers which follow from these GL p,q (2)- and -invariant bosonic algebras. The Fock space representations of both of these quantum group invariant bosonic oscillator algebras are analyzed. It is concisely shown that these two quantum group invariant bosonic particle gases have different algebraic and high-temperature thermo-statistical properties.  相似文献   

17.
In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces B{\mathcal{B}} and B-\frac12,\frac124{\mathcal{B}^{-\frac12,\frac12}_4} (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS ν ) has a unique global solution with initial data u0 = (u0h, u03){u_0 = (u_0^h, u_0^3)} which satisfies ||u0h||B exp(\fracCn4 ||u03||B4) £ c0n{\|u_0^h\|_{\mathcal{B}} \exp\bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}}^4\bigr) \leq c_0\nu} or ||u0h||B-\frac12,\frac124 exp(\fracCn4 ||u03||B-\frac12,\frac1244) £ c0n{\|u_0^h\|_{\mathcal{B}^{-\frac12,\frac12}_{4}} \exp \bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}^{-\frac12,\frac12}_{4}}^4\bigr)\leq c_0\nu} for some c 0 sufficiently small. To overcome the difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-Lerner type spaces, [(Lpt)\tilde](B){\widetilde{L^p_t}(\mathcal{B})}, we introduced here sort of weighted Chemin-Lerner type spaces, [(L2t, f)\tilde](B){\widetilde{L^2_{t, f}}(\mathcal{B})} for some apropriate L 1 function f(t).  相似文献   

18.
A method for the determination of the noise spectral density in a high-temperature microwave SQUID operating in the hysteresis regime is developed. Under these conditions, the reflection coefficient serves as an output signal. It is shown that if a directional coupler used for extracting the reflected wave is placed as close to the SQUID loop as possible, the magnetometer can be designed as a microwave integrated circuit with a noise flux spectral density SF 1/2 < 10 - 5 F0 /\textHz\text0\text.5 ,\textwhere F\text0 S_\Phi ^{1/2} < 10^{ - 5} \Phi _0 /{\text{Hz}}^{{\text{0}}{\text{.5}}} ,{\text{where }}\Phi _{\text{0}} , is the magnetic flux quantum.  相似文献   

19.
The propagation of electromagnetic waves issued by modulated moving sources of the form j( t,x ) = a( t )e - iw0 t [(x)\dot]0 ( t )d( x - x0 ( t ) )j\left( {t,x} \right) = a\left( t \right)e^{ - i\omega _0 t} \dot x_0 \left( t \right)\delta \left( {x - x_0 \left( t \right)} \right) is considered, where j(t, x) stands for the current density vector, x = (x 1, x 2, x 3) ∈ ℝ3 for the space variables, t ∈ ℝ for time, tx 0(t) ∈ ℝ3 for the vector function defining the motion of the source, ω 0 for the eigenfrequency of the source, a(t) for a narrow-band amplitude, and δ for the standard δ function. Suppose that the media under consideration are dispersive. This means that the electric and magnetic permittivity ɛ(ω), μ(ω) depends on the frequency ω. We obtain a representation of electromagnetic fields in the form of time-frequency oscillating integrals whose phase contains a large parameter λ > 0 characterizing the slowness of the change of the amplitude a(t) and the velocity [(x)\dot]0 ( t )\dot x_0 \left( t \right) and a large distance between positions of the source and the receiver. Applying the two-dimensional stationary phase method to the integrals, we obtain explicit formulas for the electromagnetic field and for the Doppler effects. As an application of our approach, we consider the propagation of electromagnetic waves produced by moving source in a cold nonmagnetized plasma and the Cherenkov radiation in dispersive media.  相似文献   

20.
We study the Schrödinger equation on a flat euclidean cone ${\mathbb{R}_+ \times \mathbb{S}^1_\rho}We study the Schr?dinger equation on a flat euclidean cone \mathbbR+ ×\mathbbS1r{\mathbb{R}_+ \times \mathbb{S}^1_\rho} of cross-sectional radius ρ > 0, developing asymptotics for the fundamental solution both in the regime near the cone point and at radial infinity. These asymptotic expansions remain uniform while approaching the intersection of the “geometric front,” the part of the solution coming from formal application of the method of images, and the “diffractive front” emerging from the cone tip. As an application, we prove Strichartz estimates for the Schr?dinger propagator on this class of cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号