首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It was proved by Erdös, Ko, and Radó (Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser.12 (1961), 313–320.) that if A = {;A1,…, Al}; consists of k-subsets of a set with n > 2k elements such that AiAj ≠ ? for all i, j then l ? (k?1n?1). Schönheim proved that if A1, …, Al are subsets of a set S with n elements such that Ai ? Aj, AiAjø and AiAjS for all ij then l ? ([n2] ? 1n ? 1). In this note we prove a common strengthening of these results.  相似文献   

2.
Suppose A1,…, An are subsets of a finite set A, and B1,…, Bn are subsets of a finite set B. For each subset S of N = {1, 2,…, n}, let As = ∩i?SAi and BS = ∩i?SBi. It is shown that if explicit bijections fS:ASBS for each S ? N are given, an explicit bijection h:A-∪i=1AiB-∪i=1Bi can be constructed. The map h is independent of any ordering of the elements of A and B, and of the order in which the subsets Ai and Bi are listed.  相似文献   

3.
In this paper, we prove a generalization of the familiar marriage theorem. One way of stating the marriage theorem is: Let G be a bipartite graph, with parts S1 and S2. If A ? S1 and F(A) ? S2 is the set of neighbors of points in A, then a matching of G exists if and only if ΣxS2 min(1, | F?1(x) ∩ A |) ≥ | A | for each A ? S1. Our theorem is that k disjoint matchings of G exist if and only ΣxS2 min (k, | F?1(x) ∩ A |) ≥ k | A | for each A ? S1.  相似文献   

4.
Families A1,A2,…,Ak of sets are said to be cross-intersecting if for any i and j in {1,2,…,k} with ij, any set in Ai intersects any set in Aj. For a finite set X, let X2 denote the power set of X (the family of all subsets of X). A family H is said to be hereditary if all subsets of any set in H are in H; so H is hereditary if and only if it is a union of power sets. We conjecture that for any non-empty hereditary sub-family H≠{∅} of X2 and any k?|X|+1, both the sum and the product of sizes of k cross-intersecting sub-families A1,A2,…,Ak (not necessarily distinct or non-empty) of H are maxima if A1=A2=?=Ak=S for some largest starSofH (a sub-family of H whose sets have a common element). We prove this for the case when H is compressed with respect to an element x of X, and for this purpose we establish new properties of the usual compression operation. As we will show, for the sum, the condition k?|X|+1 is sharp. However, for the product, we actually conjecture that the configuration A1=A2=?=Ak=S is optimal for any hereditary H and any k?2, and we prove this for a special case.  相似文献   

5.
On λ-designs     
A λ-design is a system of subsets S1, S2,…, Sn from an n-set S, n > 3, where |SiSj| = λ for ij, |Sj| = kj > λ > 0, and not all kj, are equal. Ryser [9] and Woodall [101 have shown that each element of S occurs either r1, or r2 times (r1r2) among the sets S1,…, Sn and r1 +r2 = n + 1. Here we: (i) mention most of what is currently known about λ-designs; (ii) provide simpler proofs of some known results; (iii) present several new general theorems; and (iv) apply our theorems and techniques to the calculation of all λ-designs for λ ? 5. In fact, this calculation has been done for all λ ?/ 9 and is available from the author.  相似文献   

6.
Let S be an n-element set. In this paper, we determine the smallest number f(n) for which there exists a family of subsets of S{A1,A2,…,Af(n)} with the following property: Given any two elements x, yS (xy), there exist k, l such that AkAl= ?, and xAk, yAl. In particular it is shown that f(n)= 3 log3n when n is a power of 3.  相似文献   

7.
For a string A=a1an, a reversalρ(i,j), 1?i?j?n, transforms the string A into a string A=a1ai-1ajaj-1aiaj+1an, that is, the reversal ρ(i,j) reverses the order of symbols in the substring aiaj of A. In the case of signed strings, where each symbol is given a sign + or -, the reversal operation also flips the sign of each symbol in the reversed substring. Given two strings, A and B, signed or unsigned, sorting by reversals (SBR) is the problem of finding the minimum number of reversals that transform the string A into the string B.Traditionally, the problem was studied for permutations, that is, for strings in which every symbol appears exactly once. We consider a generalization of the problem, k-SBR, and allow each symbol to appear at most k times in each string, for some k?1. The main result of the paper is an O(k2)-approximation algorithm running in time O(n). For instances with , this is the best known approximation algorithm for k-SBR and, moreover, it is faster than the previous best approximation algorithm.  相似文献   

8.
On Erdos' ten-point problem   总被引:2,自引:0,他引:2  
Around 1994, Erdoset al. abstracted from their work the following problem: “Given ten pointsA ij, 1≤ij≤5, on a plane and no three of them being collinear, if there are five pointsA k, 1≤k≤5, on the plane, including points at infinity, with at least two points distinct, such thatA i, Aj, Aij are collinear, where 1≤ij≤5, is it true that there are only finitely many suchA k's?” Erdoset al. obtained the result that generally there are at most 49 groups of suchA k's. In this paper, using Clifford algebra and Wu's method, we obtain the results that generally there are at most 6 such groups ofA k's.  相似文献   

9.
Let {B1,…,Bn} be a set of n rank one n×n row stochastic matrices. The next two statements are equivalent: (1) If A is an n×n nonnegative matrix, then 1 is an eigenvalue ofBkA for each k=1,…,n if and only if A is row stochastic. (2) The n×n row stochastic matrix S whose kth row is a row of Bk for k=1,…,n is nonsingular. For any set {B1, B2,…, Bp} of fewer than n row stochastic matrices of order n×n and of any rank, there exists a nonnegative n×n matrix A which is not row stochastic such that 1 is eigenvalue of every BkA, k=1,…,p.  相似文献   

10.
Given a sequence A = (a 1, …, a n ) of real numbers, a block B of A is either a set B = {a i , a i+1, …, a j } where ij or the empty set. The size b of a block B is the sum of its elements. We show that when each a i ∈ [0, 1] and k is a positive integer, there is a partition of A into k blocks B 1, …, B k with |b i ?b j | ≤ 1 for every i, j. We extend this result in several directions.  相似文献   

11.
Let k be a field, and let S,T,S1,T1 be skew-symmetric matrices over k with S,S1 both nonsingular (if k has characteristic 2, a skew-symmetric matrix is a symmetric one with zero diagonal). It is shown that there exists a nonsingular matrix P over k with P'SP = S1, P'TP = T1 (where P' denotes the transpose of P) if and only if S-1T and S-11T1 are similar. It is also shown that a 2m×2m matrix over k can be factored as ST, with S,T skew-symmetric and S nonsingular, if and only if A is similar to a matrix direct sum BB where B is an m×m matrix over k. This is equivalent to saying that all elementary divisors of A occur with even multiplicity. An extension of this result giving necessary and sufficient conditions for a square matrix to be so expressible, without assuming that either S or T is nonsingular, is included.  相似文献   

12.
The simultaneous diagonalization of two real symmetric (r.s.) matrices has long been of interest. This subject is generalized here to the following problem (this question was raised by Dr. Olga Taussky-Todd, my thesis advisor at the California Institute of Technology): What is the first simultaneous block diagonal structure of a nonsingular pair of r.s. matrices ? For example, given a nonsingular pair of r.s. matrices S and T, which simultaneous block diagonalizations X′SX = diag(A1, , Ak), X′TX = diag(B1,, Bk) with dim Ai = dim Bi and X nonsingular are possible for 1 ? k ? n; and how well defined is a simultaneous block diagonalization for which k, the number of blocks, is maximal? Here a pair of r.s. matrices S and T is called nonsingular if S is nonsingular.If the number of blocks k is maximal, then one can speak of the finest simultaneous block diagonalization of S and T, since then the sizes of the blocks Ai are uniquely determined (up to permutations) by any set of generators of the pencil P(S, T) = {aS + bT|a, tb ε R} via the real Jordan normal form of S?1T. The proof uses the canonical pair form theorem for nonsingular pairs of r.s. matrices. The maximal number k and the block sizes dim Ai are also determined by the factorization over C of ? (λ, μ) = det(λS + μT) for λ, μ ε R.  相似文献   

13.
t?(2k, k, λ) designs having a property similar to that of Hadamard 3-designs are studied. We consider conditions (i), (ii), or (iii) for t?(2k, k, λ) designs: (i) The complement of each block is a block. (ii) If A and B are a complementary pair of blocks, then ∥ AC ∥ = ∥ BC ∥ ± u holds for any block C distinct from A and B, where u is a positive integer. (iii) if A and B are a complementary pair of blocks, then ∥ AC ∥ = ∥ BC ∥ or ∥ AC ∥ = ∥ BC ∥ ± u holds for any block C distinct from A and B, where u is a positive integer. We show that a t?(2k, k, λ) design with t ? 2 and with properties (i) and (ii) is a 3?(2u(2u + 1), u(2u + 1), u(2u2 + u ? 2)) design, and that a t?(2k, k, λ) design with t ? 4 and with properties (i) and (iii) is the 5-(12, 6, 1) design, the 4-(8, 4, 1) design, a 5?(2u2, u2, 14(u2 ? 3) (u2 ? 4)) design, or a 5?(23u(2u + 1), 13u(2u = 1), 15 4u(2u2 + u ? 9) (2u2 + u ? 12)) design.  相似文献   

14.
A pair (A, B), where A is an n × n matrix and B is an n × m matrix, is said to have the nonnegative integers sequence {rj}j=1p as the r-numbers sequence if r1 = rank(B) and rj = rank[B ABAj−1 B] − rank[B ABAj−2B], 2 ≤ jp. Given a partial upper triangular matrix A of size n × n in upper canonical form and an n × m matrix B, we develop an algorithm that obtains a completion Ac of A, such that the pair (Ac, B) has an r-numbers sequence prescribed under some restrictions.  相似文献   

15.
For all non-negative integers n1,n2,n3,j1,j2 and j3 with nk+jk>1 for k=1,2,3, (nk,jk)≠(nl,jl) if kl, j3=n3−1 and jknk−1 for k=1,2, we study the center variety of the 6-parameter family of real planar polynomial vector given, in complex notation, by , where z=x+iy and A,B,CC\{0}.  相似文献   

16.
Let A and B be matrices over a principal ideal domain, Π. Necessary conditions, involving the invariant factors of A and B, are given for B to be a submatrix of A or a principal submatrix of A.If a given nonnegative integral matrix, B, is the intersection matrix of a pair of families of subsets of an n-set, and n is the smallest integer for which this is true, we say that the content of B is n. In that event, B is a submatrix of K(n), the intersection matrix of all subsets of an n-set. More refined results are obtained in certain cases by considering S(n, k, l), the intersection matrix of the k-subsets of an n-set versus its l-subsets. The invariant factors of K(n) and S(n, k, l) are calculated and it is shown how this information may be used to get lower bounds for the content of B. In the more widely studied symmetric version of the content problem, B must be a principal submatrix of K(n) or, possibly, S(n, k) = S(n, k, k). In this case, the invariant factors of K(n) ? xI or S(n, k) ? xI also provide relevant information.  相似文献   

17.
Let a complex pxn matrix A be partitioned as A′=(A1,A2,…,Ak). Denote by ?(A), A′, and A? respectively the rank of A, the transpose of A, and an inner inverse (or a g-inverse) of A. Let A(14) be an inner inverse of A such that A(14)A is a Hermitian matrix. Let B=(A(14)1,A(14)2,…,Ak(14)) and ρ(A)=i=1kρ(Ai).Then the product of nonzero eigenvalues of BA (or AB) cannot exceed one, and the product of nonzero eigenvalues of BA is equal to one if and only if either B=A(14) or Ai>Aj1=0 for all ij,i, j=1,2,…,k . The results of Lavoie (1980) and Styan (1981) are obtained as particular cases. A result is obtained for k=2 when the condition ρ(A)=i=1kρ(Ai) is no longer true.  相似文献   

18.
Let S be a set of n elements, and k a fixed positive integer <12n. Katona's problem is to determine the smallest integer m for which there exists a family A = {A1, …, Am} of subsets of S with the following property: |i| ? k (i = 1, …, m), and for any ordered pair xi, xiS (ij) there is A1A such that xiA1, xj ? A1. It is given in this note that m = ?2nk? if12k2 ? 2.  相似文献   

19.
We consider the problem of the identification of the time-varying matrix A(t) of a linear m-dimensional differential system y′ = A(t)y. We develop an approximation An,k = ∑nj ? 1cj{Y(tk + τj) Y?1(tk) ? I} to A(tk) for grid points tk = a + kh, k = 0,…, N using specified τj = θjh, 0 < θj < 1, j = 1, …, n, and show that for each tk, the L1 norm of the error matrix is O(hn). We demonstrate an efficient scheme for the evaluation of An,k and treat sample problems.  相似文献   

20.
Let A1,A2,…,An be finite sets such that Ai?Aj for all ij. Let F be an intersecting family consisting of sets contained in some Ai, i=1,2,…,n. Chvátal conjectured that among the largest intersecting families, there is always a star. In this paper, we obtain another proof of a result of Schönheim: If A1A2∩?∩An≠?, then the conjecture is true. We also prove that if AiAjAk = ? for all ijki or if the independent system satisfies a hereditary tree structure, then the conjecture is also true.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号