首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
By considering the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, the coupled rate equations for a diode-pumped passively Q-switched laser with V3+:YAG saturable absorber are given. These coupled rate equations are solved numerically and the key parameters of an optimally coupled passively Q-switched laser with V3+:YAG at 1342 nm are determined. These key parameters include the parameters of the gain medium, the saturable absorber and the resonator, which can maximize the pulse energy of singly Q-switched pulse. The optimal calculations for a diode-pumped passively Q-switched a-Nd:GdVO4 laser with V3+:YAG saturable absorber are presented to demonstrate the numerical simulation applicable.  相似文献   

2.
By considering the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, the coupled rate equations for a diode-pumped passively Q-switched and mode-locked (QML) laser with Cr4+:YAG saturable absorber are given. These coupled rate equations are solved numerically and the key parameters of an optimally coupled passively QML laser are determined for the first time. These key parameters include the parameters of the gain medium, the saturable absorber and the resonator, which can maximize the pulse energy of singly Q-switched envelope. The optimal calculations for a diode-pumped passively QML Nd:GdVO4 laser with Cr4+:YAG saturable absorber are presented to demonstrate the numerical simulation applicable.  相似文献   

3.
A diode-pumped doubly Q-switched c-cut Nd:GdVO4 laser at 1.34 μm with acousto-optic (AO) modulator and V3+:YAG saturable absorber is demonstrated. This doubly Q-switched laser can generate shorter pulse width and higher peak power than the singly Q-switched laser only with an AO modulator or a V3+:YAG saturable absorber. By considering the thermal lens effect of the laser gain medium, the coupled rate equations for the doubly Q-switched laser at 1.34 μm under Gaussian approximation are given. The numerical solutions of the equations are in agreement with the experimental results.  相似文献   

4.
Nd3+:NaY(WO4)2, known as Nd:NYW, is a new type crystal. By using laser-diode as pump source, a passive Q-switching of intracavity-frequency-doubling Nd:NYW/KTP laser has been realized with Cr4+:YAG saturable absorber. The dependence of pulse repetition rate, pulse energy, pulse width, and peak power on incident pump power for different small-signal transmissions of Cr4+:YAG are measured. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.  相似文献   

5.
The currently available Nd:hosted lasers utilizing passive Q-switches: a plastic dye sheet, a LiF:F2- color center crystal, a Cr4+:YAG crystal or a RG1000 colored glass filter have been investigated in detail and the results summarized for comparison purposes for the first time. We first briefly summarize our own and others’ past studies, and report on recent new results concerning the use of Cr4+:YAG crystals and RG1000 colored glass filters as Nd:hosted laser passive Q-switchings. We then investigate in detail solid state laser system design using the above four passive modulators. Typical interpretations are given based on characteristic features of the materials, such as their saturation intensity and relaxation times. The results are then explained via adequate equations derived with respect to the relevant physical parameters of the materials. The optical dersity selection of plastic dye sheet passive Q-switching for the Nd:YAG laser system design is verified quantitatively, and the slope efficiencies from plastic dye sheet passive Q-switched operation by single pulse and multiple pulse bursts are investigated. The multi-peak Q-switched pulse timing phenomena are presented as well. The outstanding annealability, long lifetime, inexpensiveness and high repetition rate operation of LiF:F2- crystals are highly recommended.  相似文献   

6.
By simultaneously using both V3+:YAG and Co:LMA saturable absorbers in the cavity, a diode-pumped doubly passively Q-switched c-cut Nd:GdVO4 laser at 1.34 μm is demonstrated for the first time. The average output power, the pulse width and the pulse repetition rate have been measured. The experimental results show that the doubly passively Q-switched laser can generate shorter pulse width with higher peak power in comparison to the singly passively Q-switched laser only with V3+:YAG or Co:LMA saturable absorber. At the pump power 13 W, the pulse width has been compressed 83% and the peak power has been improved 15 times, respectively.  相似文献   

7.
A diode-pumped doubly passively Q-switched intracavity-frequency-doubling Nd:LuVO4/KTP green laser with Cr4+:YAG and GaAs saturable absorbers is demonstrated. This laser can generate the shorter pulse width with higher peak power compared with the singly passively Q-switched green laser with Cr4+:YAG or GaAs saturable absorber. The relations between the pulse symmetry and the ratio of the small-signal transmissions of two saturable absorbers are investigated. By reasonably choosing the small-signal transmissions of both saturable absorbers, the doubly passively Q-switched green laser can generate the much more symmetric pulse profile. The coupled rate equations are used to simulate the passively Q-switched process of the green laser by considering the Gaussian transversal and longitudinal distributions of the intracavity photon density. The numerical results of the equations are consistent with the experimental results.  相似文献   

8.
The long fluorescence lifetime of the upper laser level of Yb:YAG seems to make it an attractive material for the realization of Q-switched pulses with large pulse energy. The consequences of the spectroscopic parameter set of Yb:YAG for the feasibility of a large pulse energy laser, which emits pulses with nanosecond duration, are addressed on the basis of a rate equation model. The rate equations are analytically solved and applied to the optical side pumping of Yb:YAG rods. The thermal population of the lower laser level and the saturation of the laser material are discussed in specific.  相似文献   

9.
By simultaneously using both an acoustic-optic (AO) modulator and a Cr4+:YAG saturable absorber in the cavity, for the first time, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The pulse duration is obviously compressed in contrast to the actively acoustic-optic Q-switched laser. By considering the Gaussian transversal distribution of the intracavity photon density and the longitudinal distribution of the photon density along the cavity axis as well as the influence of turnoff time of the acoustic-optic (AO) Q-switch, we provide the coupled rate equations for a diode-pumped doubly Q-switched Nd:GdVO4 laser with both an acoustic-optic (AO) modulator and a Cr4+:YAG saturable absorber. These coupled rate equations are solved numerically, and the dependence of pulse width, pulse energy and peak power on the incident pump power at different pulse repetition rates is obtained. The numerical solutions of equations agree well with the experimental results.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

10.
This paper reported a passively Q-switched green laser of LD pumped linear cavity structure by using Nd:YAG/Cr4+:YAG composite crystal and the type II phase matching KTP crystal. The dependence of average output power, pulse width and pulse repetition rate on pump power at different initial transmissions of Cr4+:YAG were measured and analyzed. With Cr4+:YAG of 80% initial transmission, under pump power of 13.97 W, the output average power is up to 681 mW, with pulse width of 200 ns and pulse repetition rate of 9.1 kHz. The laser operates in a fundamental mode.  相似文献   

11.
A convex-ARR (Anti-resonant Ring) unstable resonator was introduced in a Cr4+:YAG passively Q-switched Nd:YAG pulsed laser. There are two novel features in this cavity, one is the unstable resonator increasing output energy and improving laser mode; the other is the ARR structure efficiently enhancing the laser stability. A high energy and high stability Q-switched pulse with a single pulse energy of 85.6 mJ, a pulse width of 38 ns and an energy stability of 99.6% was obtained. The experimental results were analyzed well by using the mechanism of transient grating and the properties of the unstable resonator.  相似文献   

12.
J. Ma  Y. Zhai  D. Li  C. Fang  D. Liu 《Laser Physics》2011,21(4):680-683
By simultaneously using both a V3+:YAG and a Co2+:LaMgAl11O19 saturable absorber in the cavity, for the first time to our knowledge, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The dependence of pulse width, pulse repetition rate, pulse energy and peak power on the incident pump power are measured. Under the absorbed pump power of 8.59 W, both the pulse temporal profile of the passive double-switching with the pulse width of 25.29 ns, and the passive single-switching just using V3+:YAG with pulse width of 30.46 ns are obtained. The pulse duration is partly compressed in contrast to the purely passively Q-switched laser with V3+:YAG.  相似文献   

13.
杨晓冬  侯新华 《光子学报》2014,41(10):1145-1148
对激光二极管端面泵浦Cr4+:YAG被动调QNd:YAG激光器输出特性进行了实验研究.实验研究发现,激光器输出功率及脉冲重复频率随谐振腔长度增大而增大.为解释这一实验现象,测量了泵浦光斑在激光晶体内尺寸,同时计算了激光晶体及Cr4+:YAG晶体内的基模激光光斑半径随谐振腔长度变化.分析结果表明:激光晶体内泵浦光斑尺寸远小于激光晶体内基模光斑半径,腔模间交叠效率较低;当腔长增加时,激光晶体内的基模激光光斑减小,腔模间交叠效率增加,从而导致输出功率及脉冲重复频率随腔长增加而增加;另外,Cr4+:YAG晶体内光斑半径也随谐振腔长度减小,引起Cr4+:YAG晶体漂白时间缩短,导致脉冲重复频率随腔长增加而增加.  相似文献   

14.
J. Ma  Y. Li  Y. Sun  H. Qi  R. Lan  X. Hou 《Laser Physics》2009,19(3):384-388
By considering both the transversal and longitudinal Gaussian spatial distribution of the intracavity photon density, a couple of rate equations describing a laser-diode end-pumped passively Q-switched Nd:GdVO4 laser with V3+:YAG saturable absorber have been proposed. Solving these space-dependent rate equations numerically, we obtain the dependences of pulse width, pulse repetition rate, single-pulse energy and peak power on pump power. In the experiment, a laser-diode end-pumped Nd:GdVO4 laser passively Q-switched by a V3+:YAG saturable absorber has been realized, and the experimental results are consistent with the theoretical calculations.  相似文献   

15.
J. Ma  D. Li  P. Zhao  D. Liu 《Laser Physics》2010,20(11):1941-1944
By simultaneously using both an acoustic-optic (AO) modulator and a V3+:YAG saturable absorber in the cavity, for the first time to our knowledge, a diode-pumped doubly Q-switched Nd:GdVO 4 laser has been realized. The dependence of pulse width, pulse energy and peak power on the incident pump power at determinate pulse repetition rate are measured. Under the absorbed pump power of 8.59 W, the pulse temporal profile of the AO-switching with the pulse duration of 14.5 ns, the double Q-switching with pulse duration of 7.6 ns at 10 kHz, and the passive Q-switching with pulse duration of 22.3 ns are obtained. The pulse duration is obviously compressed in contrast to the purely actively AO Q-switched laser or the purely passively Q-switched laser with V3+:YAG.  相似文献   

16.
The Runge-Kutta method is used to solve numerically the rate equations of quasi-three-level passive Q-switched laser directly without any approximate treatment of these differential equations. The 946 nm self-Q-switched Cr,Nd:YAG laser is chosen for example to describe the details. The time-dependence of intra-cavity photon density is obtained and its detailed real-time changing process is reproduced in numerical solution. The curves of laser output parameters such as average output power, pulse width, repetition rate, pulse energy and peak power changing with different cavity conditions such as pump power, output coupler reflectivity, Cr,Nd:YAG crystal length, Nd3+ ion and Cr4+ ion concentrations are simulated according to direct numerical solution rather than analytical expressions. This direct numerical simulation method can be widely used to describe and optimize the quasi-three-level passive Q-switched laser theoretically.  相似文献   

17.
Cr^4+:YAG的可饱和吸收特性与被动Q开关性能研究   总被引:22,自引:6,他引:16  
欧阳斌  丁彦华 《光学学报》1996,16(12):665-1670
运用速率方程计算了Cr^4+:YAG晶体的可饱和吸收特性参数,包括初始吸收系数,饱和吸收系数,饱和光强和损耗调制度,用Cr^4+:YAG对脉冲和连续Nd:YAG激光器进行了被动调Q,在脉冲Nd:YAG激光器上得到了8ns的调Q激光脉冲,在连续Nd:YAG激光器的调Q中得到了间隔和幅度抖动小于5%的输出脉冲充列。  相似文献   

18.
The laser characteristics of laser-diode end-pumped Yb:YAG/Cr4+:YAG composite ceramics microchip passively Q-switched lasers were studied by solving the coupled rate equations numerically taking into account the reabsorption of Yb:YAG ceramics at laser wavelength. Effects of the reflectivity of the output coupler, the concentrations and thickness of the saturable absorbers, and pump beam area on the laser performance were investigated analytically. The simulation results of the Yb:YAG/Cr4+:YAG composite ceramics passively Q-switched microchip lasers were in good agreement with the experimental data. Better laser performance (high peak power, short pulse width and good optical-to-optical efficiency) of the composite Yb:YAG/Cr4+:YAG ceramics passively Q-switched laser can be obtained by using a thin Cr4+:YAG ceramic with high concentration, suitable reflectivity of the output coupler and proper pump beam diameter under high pump power intensity according to our simulations.  相似文献   

19.
Based on the rate equations of passively Q-switched solid state lasers, the performance of laser at a fixed pump power can be optimized through the proper choice of output coupler and the low-intensity transmission of saturable absorber. A simple expression for optimizing these two parameters is derived in this paper. We also demonstrate the performance of an efficient diode-pumpe Cr4+:YAG passively Q-switched Nd:YAG laser to generate a high-repetition-ate, high-peak power 1064 nm laser pulses, which providing pulses peak power > 10 kW with high repetition rate up to 150 kHz, and the pulse width as short as 6.8 ns.  相似文献   

20.
A quasi-continuous wave laser diode side-pumped passively Q-switched Yb:YAG slab laser with Cr4+:YAG saturable absorber has been demonstrated in order to understand the pulse properties of Yb:YAG crystal. To our knowledge the maximum 69% extraction efficiency is achieved by the system. 44 μJ pulse energy and 1.64 KW peak power with near diffraction-limited beam quality are presented at 25 Hz repetition rate. The build-up time of the Q-giant in the passively Q-switched laser is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号