首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acylhydrazones is a novel yet underexploited class of molecular switches. In the present paper, we investigated the excited‐state decay of three model systems of acylhydrazones in the gas phase by a combination of electronic structure calculations and Tully's surface hopping dynamic simulations. Our computational results demonstrated that the S2(nNπ*) state decay of the three model systems leads to both the imine‐like photo‐isomerization through the S1(nNπ*)/S0 intersection and population of the S1(nOπ*) state that will cross to the triplet manifold. The position of phenyl substituent was found to have an effect on the ratio of the two S1 states. The present theoretical work provides some understandings of the intramolecular mechanism for de‐population of the excited electronic states of acylhydrazones.  相似文献   

2.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

3.
Boron difluoride (BF2) formazanate dyes are contenders for molecular species that exhibit a large Stokes shift and bright red emission. Excitation of 3‐cyanoformazanate complexes with 10 μs wide pulses of specific wavelengths resulted in strong luminescence at 663 nm at both room temperature in solution and at 77 K in a frozen solution. Analysis of the short‐lived excitation spectrum from this luminescence shows that it arises from a vibronic manifold of a higher‐lying excited state. This dark state relaxes to the emitting state over 10 μs. TD‐DFT calculations of the two lowest‐energy excited states show that the relaxed geometries are planar for S1 but highly distorted in S2. The specific time‐ and wavelength‐dependence of the excitation profile provides a unique optical encryption capability through the comparison of emission intensities between adjacent vibronic bands only accessible in the 0–12 μs time domain.  相似文献   

4.
Boron difluoride (BF2) formazanate dyes are contenders for molecular species that exhibit a large Stokes shift and bright red emission. Excitation of 3‐cyanoformazanate complexes with 10 μs wide pulses of specific wavelengths resulted in strong luminescence at 663 nm at both room temperature in solution and at 77 K in a frozen solution. Analysis of the short‐lived excitation spectrum from this luminescence shows that it arises from a vibronic manifold of a higher‐lying excited state. This dark state relaxes to the emitting state over 10 μs. TD‐DFT calculations of the two lowest‐energy excited states show that the relaxed geometries are planar for S1 but highly distorted in S2. The specific time‐ and wavelength‐dependence of the excitation profile provides a unique optical encryption capability through the comparison of emission intensities between adjacent vibronic bands only accessible in the 0–12 μs time domain.  相似文献   

5.
Diazo compounds such as phenyldiazomethane (C6H5C(H)N2) exhibit intriguing phenomena including the ultrafast formation of singlet carbene and the excited‐state rearrangement reaction (RIES). In this work, we have used multi‐reference configuration interaction with single and double excitations (MRCI‐SD) and complete active space self‐consistent field (CASSCF) methods to study the photodissociation dynamics of C6H5C(H)N2. The equilibrium structures, transition states in the lowest three electronic states (S1, T1, and S0), and S1/S0 and T1/S0 minimum‐energy crossing points both in the Franck–Condon region and on the pathway of the CN bond dissociation have been optimized. On the basis of the calculated S1, T1, and S0 potential energy surfaces, we have uncovered the most efficient pathways to the lowest singlet and triplet phenylcarbenes (C6H5CH) in irradiated C6H5C(H)N2.  相似文献   

6.
N,N′‐Bis(pyridin‐4‐yl)formamidine (4‐pyfH) was reacted with AuI and AgI metal salts to form a novel tetranuclear complex, tetrakis[μ‐N,N′‐bis(pyridin‐4‐yl)formamidinato]digold(I)disilver(I), [Ag2Au2(C11H9N4)2] or [AuxAg4–x(4‐pyf)4] (x = 0–4), 1 , which is supported by its metallophilicity. Due to the potential permutation of the coordinated metal ions, six different canonical structures of 1 can be obtained. Complex 1 shows an emission at 501 nm upon excitation at 375 nm in the solid state and an emission at 438 nm upon excitation at 304 nm when dispersed in methanol. Time‐dependent density functional theory (TD‐DFT) calculations confirmed that these emissions can be ascribed to metal‐to‐ligand charge transfer (MLCT) processes. Moreover, the calculations of the optimized structural conformations of the S0 ground state, and the S1 and T1 excited states are discussed and suggest a distorted planar conformation for the tetranuclear Au2Ag2 complex.  相似文献   

7.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)‐3H,3′H‐[1,1′‐biisobenzofuranylidene]‐3,3′‐dione, (E)‐3‐(3‐oxobenzo[c] thiophen‐1(3H)‐ylidene)isobenzofuran‐1(3H)‐one, and (E)‐3H,3′H‐[1,1′‐bibenzo[c] thiophenylidene]‐3,3′‐dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single‐crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi‐colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

8.
A series of hemicyanine derivatives are excellent fluorescent viscosity sensors in live cells and in imaging of living tissues due to their low quantum yields in solution but large fluorescence enhancements in viscous environments. Herein, three carbazole‐based hemicyanine dyes with different heterocycles are studied. They have different background quantum yields, and hence different sensitivities to viscosity detection, large Stokes shifts, and high sensitivity. Better understanding of the structure–property relationships for viscosity sensitivity could benefit the design of improved dyes. Computational studies on these dyes reveal the mechanism of viscosity sensitivity of fluorescent molecular rotors and the nature of the difference in viscosity sensitivity of the three dyes. The results show that the greatly raised HOMO and greatly lowered LUMO in the S1 state compared with the S0 state are responsible for the large Stokes shift of the three dyes. The heterocyclic moieties have the primary influence on the LUMO levels of the three hemicyanine dyes. Rotation about the C? C bond adjacent to the carbazole moiety of the three dyes drives the molecule toward a small energy gap between the ground state and the first excited state, which causes mainly nonradiative deactivation. The oscillator strengths in the lowest singlet excited state drop rapidly with increasing rotation between 0 and 95°, which leads to a dark state for these dyes when fully twisted at 95°. We draw a mechanistic picture at the molecular level to illustrate how these dyes work as viscosity‐sensitive fluorescent probes. The activation barriers and energy gaps of C? C bond rotation strongly depend on the choice of heterocycle, which plays a major role in reducing fluorescence quantum yield in the free state and provides high sensitivity to viscosity detection in viscous environments for the carbazole‐based hemicyanine dyes.  相似文献   

9.
Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra‐slow excited‐state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014 , 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum‐energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck–Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1/S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1/S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited‐state deactivation pathways are responsible for the in‐part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1/S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.  相似文献   

10.
In this article, the ability of two‐component photoinitiator systems for efficient polymerization of 2‐ethyl‐2‐(hydroxymethyl)?1,3‐propanediol triacrylate was presented. The photophysics and photochemistry of squaraine dyes in the presence of an electron donor as well as an electron acceptor was investigated, and it was found that the photosensitizer in an excited state might act as an electron acceptor or an electron donor. The excited states of squaraines may be quenched by tetramethylammonium n‐butyltriphenylborate ( B2 ), diphenyliodonium chloride ( I1 ), and N‐methoxy‐4‐phenylpyridinium tetrafluoroborate ( NO ). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 471–484  相似文献   

11.
We report an Ar/Kr ion laser induced spectrally resolved S1 → S0 emission from an azulene in a host naphthalene crystal observed at the helium λ-point and at 77 K. Less well resolved S1 → S0 emission from crystalline azulene dispersed in a KBr pellet at 300 K is also reported. For the 6471 Å excitation the emission from the azulene in naphthalene system is analyzed in terms of three components: a resonance enhanced Raman emission originating from a nonstationary laser photon energy state 800 cm?1 above the S1 origin, a partially relaxed fluorecence originating from the 665 cm?1 vibrational level of S1 and a totally relaxed fluorecence from the S1 origin (14651 cm?1). The interpretation of the spectral lines is based on totally symetric vibrational modes (406, 679, 825,902, 1203, 1269, 1401, and 1586 cm?1) the most prominent of which is the progression forming 825 cm?1 mode. On the basis of both energies and intensities, correlations are made between ground and excited state vibrations and are compared with earlier results. Based on our results, a discussion is given on a plausible relaxation scheme for our system including the influence of Franck—Condon factors on the observability of unrelaxed emission.  相似文献   

12.
The density function theory (DFT) is to elucidate the electronic structure of bis(dinitrogen) Fe(0) complex, (CNC)Fe_2N2, and its N2 elimination mechanism. (CNC)Fe_2N2 has a low‐spin singlet (S = 0) ground state with a distorted square pyramidal structure. Fragment orbital interaction analysis yields total occupancy of π* orbitals (LUF(4)O and LUF(4)O−1) of apical N3 N4 is 0.188 while that of basal N1 N2 is 0.187 in S0(CNC)Fe_2N2, suggesting nearly the same activation extent for both basal and apical N2 ligands. The lowest‐lying triplet state T1 (3‐A′) has a repulsive potential energy surface along the Fe N3 bong length by PBE functional, while a minimum on T2 state (3‐A″) with higher energy is found by B3LYP functional. The nonadiabatic N2 elimination mechanism of (CNC)Fe_2N2 involves an S0‐T1 states crossing, which lowers the activation energy to 9.7 kcal/mol and produces high‐spin intermediate (CNC)Fe N2. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
Quantum-chemical calculations in the AM1 approximation were undertaken for the optimized geometry of the cations of polymethine dyes [R+—(CH=CH) n —CH=R], where R represents phenyl substituents or pyridinium, pyrylium, and thiopyrylium groups and n = 1-6, in the ground state and for the electron density distribution in the Frank – Condon excited state. It was found that excitation of the molecule by a light quantum leads to a decrease in the length of the charge wave (soliton). It was shown that the length of the soliton depends on the electron-donating character of the terminal groups R and on the length of the conjugated chain, while shortening of the soliton in the thiopyrylocyanines leads to disruption of its symmetry.  相似文献   

14.
Upon irradiation with ultraviolet wavelengths, Fe2(S2C3H6)(CO)6, a simple model of the [FeFe]‐hydrogenase active site, undergoes CO dissociation to form the unsaturated Fe2(S2C3H6)(CO)5 species and successively a solvent adduct at the vacant coordination site. In the present work, the CO‐photolysis of Fe2(S2C3H6)(CO)6 was investigated by density functional theory (DFT) and time‐dependent DFT (TDDFT). Trans Fe2(S2C3H6)(CO)5 form and the corresponding trans heptane or acetonitrile solvent adducts are the lowest energy ground state forms. CO dissociation barriers computed for the lowest triplet state are roughly halved with respect to those for the ground state suggesting that some low‐lying excited potential energy surface (PES) could be loosely bound with respect to Fe? C bond cleavage. The TDDFT excited state PESs and geometry optimizations for the excited states likely involved in the CO‐photolysis suggest that the Fe? S bond elongation and the partial isomerization toward the rotated form could take place simultaneously, favoring the trans CO photodissociation. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Phototriggered intramolecular isomerization in a series of ruthenium sulfoxide complexes, [Ru(L)(tpy)(DMSO)]n+ (where tpy=2,2’:6’,2’’‐terpyridine; DMSO=dimethyl sulfoxide; L=2,2’‐bipyridine (bpy), n=2; N,N,N’,N’‐tetramethylethylenediamine (tmen) n=2; picolinate (pic), n=1; acetylacetonate (acac), n=1; oxalate (ox), n=0; malonate (mal), n=0), was investigated theoretically. It is observed that the metal‐centered ligand field (3MC) state plays an important role in the excited state S→O isomerization of the coordinated DMSO ligand. If the population of 3MCS state is thermally accessible and no 3MCO can be populated from this state, photoisomerization will be turned off because the 3MCS excited state is expected to lead to fast radiationless decay back to the original 1GSS ground state or photodecomposition along the Ru2+?S stretching coordinate. On the contrary, if the population of 3MCS (or 3MCO) state is inaccessible, photoinduced S→O isomerization can proceed adiabatically on the potential energy surface of the metal‐to‐ligand charge transfer excited states (3MLCTS3MLCTO). It is hoped that these results can provide valuable information for the excited state isomerization in photochromic d6 transition‐metal complexes, which is both experimentally and intellectually challenging as a field of study.  相似文献   

16.
A mechanically interlocked squaraine rotaxane is comprised of a deep‐red fluorescent squaraine dye inside a tetralactam macrocycle. NMR studies show that Cl? binding to the rotaxane induces macrocycle translocation away from the central squaraine station, a process that is completely reversed when the Cl? is removed from the solution. Steady‐state fluorescence and excited‐state lifetime measurements show that this reversible machine‐like motion modulates several technically useful optical properties, including a three‐fold increase in deep‐red fluorescence emission that is observable to the naked eye. The excited states were characterized quantitatively by time‐correlated single photon counting, femtosecond transient absorption spectroscopy, and nanosecond laser flash photolysis. Cl? binding to the rotaxane increases the squaraine excited singlet state lifetime from 1.5 to 3.1 ns, and decreases the excited triplet state lifetime from >200 to 44 μs. Apparently, the surrounding macrocycle quenches the excited singlet state of the encapsulated squaraine dye and stabilizes the excited triplet state. Prototype dipsticks were prepared by adsorbing the lipophilic rotaxane onto the ends of narrow, C18‐coated, reverse‐phase silica gel plates. The fluorescence intensity of a dipstick increased eighteen‐fold upon dipping in an aqueous solution of tetrabutylammonium chloride (300 mM ) and was subsequently reversed by washing with pure water. It is possible to develop the dipsticks for colorimetric determination of Cl? levels by the naked eye. After dipping into aqueous tetrabutylammonium chloride, a dipstick’s color slowly fades at a rate that depends on the amount of Cl? in the aqueous solution. The fading process is due primarily to hydrolytic bleaching of the squaraine chromophore within the rotaxane. That is, association of Cl? to immobilized rotaxane induces macrocycle translocation and exposure of the electrophilic C4O2 core of the squaraine station, which is in turn attacked by the ambient moisture to produce a bleached product.  相似文献   

17.
The synthesis of a new class of robust squaraine dyes, colloquially named 1,2‐hemisquarimines (1,2‐HSQiMs), through the microwave‐assisted condensation of aniline derivatives with the 1,2‐squaraine core is reported. In CH3CN, 1,2‐HSQiMs show a broad absorption band with a high extinction coefficient and a maximum at around λ=530 nm, as well as an emission band centered at about λ=574 nm, that are pH dependent. Protonation of the imine nitrogen causes a redshift of both absorption and emission maxima, with a concomitant increase in the lifetime of the emitting excited state. Encapsulation of the chromophore into a cucurbit[7]uril host revealed fluorescence enhancement and increased photostability in water. The redox characteristics of 1,2‐HSQiMs indicate that charge injection into TiO2 is possible; this opens up promising perspectives for their use as photosensitizers for solar energy conversion.  相似文献   

18.
The photochemical cis/trans isomerization of urocanic acid (UCA, (E)‐3‐(1′H‐imidazol‐4′‐yl)propenoic acid) was investigated using complete active space SCF (CASSCF) ab initio calculations. The singlet ground state and the triplet and the singlet manifolds of the lowest‐lying π→π* (HOMO→LUMO) excitation of the neutral and the anionic UCA were calculated using the 6‐31G* and the 6‐31+G* basis sets, respectively. The torsional barrier of the double bond of the propenoic acid moiety in UCA is observed to be considerably lower in the T1 and S1 excited states of the neutral UCA and in the T1 but not in the S1 excited state of the anionic UCA, as compared to the S0 state of the respective protonation form. The cis‐isomer of both the neutral and the anionic UCA is lower in energy than the trans‐isomer in the S0, T1, and S1 states. This energy difference is larger in the excited states than in the ground state, probably due to strengthening of the intramolecular hydrogen bond of cis‐UCA as the molecule is excited. The results of the calculations, interpreted in terms of the idea that UCA is deprotonated upon electronic excitation, led to construction of a new model for the photoisomerization mechanisms of UCA. According to this model, the trans‐to‐cis isomerization proceeds via both the triplet and the singlet manifolds in the deprotonated form of UCA. This isomerization may occur in the S0 state of the neutral UCA as well. The cis‐to‐trans isomerization is suggested to proceed only in the S0 state of the neutral UCA. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 25–37, 1999  相似文献   

19.
Seven derivatives of 1,2‐dicarbadodecaborane (ortho‐carborane, 1,2‐C2B10H12) with a 1,3‐diethyl‐ or 1,3‐diphenyl‐1,3,2‐benzodiazaborolyl group on one cage carbon atom were synthesized and structurally characterized. Six of these compounds showed remarkable low‐energy fluorescence emissions with large Stokes shifts of 15100–20260 cm?1 and quantum yields (ΦF) of up to 65 % in the solid state. The low‐energy fluorescence emission, which was assigned to a charge‐transfer (CT) transition between the cage and the heterocyclic unit, depended on the orientation (torsion angle, ψ) of the diazaborolyl group with respect to the cage C? C bond. In cyclohexane, two compounds exhibited very weak dual fluorescence emissions with Stokes shifts of 15660–18090 cm?1 for the CT bands and 1960–5540 cm?1 for the high‐energy bands, which were assigned to local transitions within the benzodiazaborole units (local excitation, LE), whereas four compounds showed only CT bands with ΦF values between 8–32 %. Two distinct excited singlet‐state (S1) geometries, denoted S1(LE) and S1(CT), were observed computationally for the benzodiazaborolyl‐ortho‐carboranes, the population of which depended on their orientation (ψ). TD‐DFT calculations on these excited state geometries were in accord with their CT and LE emissions. These C‐diazaborolyl‐ortho‐carboranes were viewed as donor–acceptor systems with the diazaborolyl group as the donor and the ortho‐carboranyl group as the acceptor.  相似文献   

20.
A first infrared pulse at frequency ν1 interacts with vibrational states in S0 and a second visible pulse at ν2 promotes the excited molecules to the S1 state from where they fluoresce. Tuning the frequency ν2 over 600 cm?1 allows the observation of a detailed spectrum which gives information on vibrational states in S0 and on vibronic states in S1 together with corresponding Franck—Condon factors. The spectra differ drastically from the common broad and featureless absorption and fluorescence bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号