首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-electron transfer and hydrogen atom transfer pathways have been proposed to account for the cytochrome P450-catalyzed alpha-carbon oxidations of amines. With the aid of electrochemistry-electrospray ionization mass spectrometry, the electrochemical potentials required for the one-electron oxidations of N-methyl- and selected N-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridinyl derivatives and the chemical fates of the resulting aminyl radical cations have been investigated. Comparison of the results of these studies with those observed in the corresponding enzyme catalyzed oxidations suggests that aminyl radical cations are not obligatory intermediates in the cytochrome P450-catalyzed alpha-carbon oxidations of this class of substrates.  相似文献   

2.
Rate constants for oxidations of benzyl alcohol-d0 and -d7 by oxoiron(IV) tetramesitylporphyrin radical cation perchlorate in acetonitrile were measured in single turnover kinetic studies. The kinetic isotope effect (kH/kD) increased from 28 at 23 degrees C to 360 at -30 degrees C due to extensive hydrogen atom tunneling that was analyzed in terms of a parabolic energy barrier to tunneling. Similarly, large KIE values were found for oxidations of ethylbenzene-d0 and -d10 at room temperature. The large KIE values are a function of the porphyrin identity, and porphyrins containing electron-withdrawing groups display normal KIEs. KIEs found under catalytic turnover conditions are somewhat smaller than those obtained in single turnover reactions. The results should serve as benchmarks for computational studies of C-H oxidations by porphyrin and heme-iron-oxo systems.  相似文献   

3.
Oxidations of 10-undecenoic acid by cytochrome P450(BM-3) and its Compound I transient were studied. The only product formed in Compound I oxidations was 10,11-epoxyundecanoic acid, whereas the enzyme under turnover conditions gave the epoxide and 9-hydroxy-10-undecenoic acid in a 10 : 90 ratio. Kinetic studies at 0 °C of oxidations by Compounds I formed by MCPBA oxidation and by a photo-oxidation pathway gave the same results, displaying saturation kinetics that yielded equilibrium binding constants and first-order oxidation rate constants that were experimentally indistinguishable. Oxidation of 10-undecenoic acid by Compound I from CYP119 generated by MCBPA oxidation also gave 10,11-epoxyundecanoic acid as the only product. CYP119 Compound I bound the substrate less strongly but reacted with a faster oxidation rate constant than P450(BM-3) Compound I. The kinetic parameters for oxidation of the substrate by P450(BM-3) under turnover conditions were similar to those of the Compound I transient even though the products differed.  相似文献   

4.
We have disclosed the direct catalytic incorporation of 1O2 to aldehydes. The unprecedented amino acid-catalyzed asymmetric alpha-oxidation of aldehydes with molecular oxygen or air proceeded with high chemoselectivity and was a direct entry for the synthesis of both enantiomers of terminal diols. The results demonstrated that simple amino acids accomplished catalytic asymmetric oxidations with molecular oxygen or air, which has previously been considered to be in the domain of enzymes and chiral transition-metal complexes. The efficiency of the catalytic process may warrant the existence of an ancient pathway for the synthesis of hydroxylated organic compounds.  相似文献   

5.
In the presence of 1-phenyl-5-mercaptotetrazole as a nucleophile, electrochemical oxidations of 1,2- and 1,4-dihydroxybenzenes have been investigated in aqueous solution using cyclic voltammetry and controlled-potential coulometry. The voltammetric results indicate that an electrooxidative/Michael-type sequential reaction occurs between the mercaptide anion and the electrochemically generated benzoquinones leading to the corresponding polyfunctional tetrazolic thioethers. The mechanism of electrochemical reaction is proved as an EC pathway using controlled-potential coulometry. In addition, the electrosyntheses of tetrazolic thioethers have been successfully performed in ambient conditions in an undivided cell using an environmentally friendly method with high atom economy.  相似文献   

6.
The ruthenium(II) complex cis-[Ru(6, 6'-Cl(2)bpy)(2)(OH(2))(2)](CF(3)SO(3))(2) (1) is a robust catalyst for C-H bond oxidations of hydrocarbons, including linear alkanes, using tert-butyl hydroperoxide (TBHP) as terminal oxidant. Alcohols can be oxidized by the "1 + TBHP" protocol to the corresponding aldehydes/ketones with high product yields at ambient temperature. Oxidation of 1 with Ce(IV) in aqueous solution affords cis-[Ru(VI)(6, 6'-Cl(2)bpy)(2)O(2)](2+), which is isolated as a green/yellow perchlorate salt (2). Complex 2 is a powerful stoichiometric oxidant for cycloalkane oxidations under mild conditions. Oxidation of cis-decalin is highly stereoretentive; cis-decalinol is obtained in high yield, and formation of trans-decalinol is not observed. Mechanistic studies showing a large primary kinetic isotope effect suggest a hydrogen-atom abstraction pathway. The relative reactivities of cycloalkanes toward oxidation by 2 have been examined through competitive experiments, and comparisons with Gif-type processes are presented.  相似文献   

7.
Dipicolinate vanadium(V) alkoxide complexes (dipic)V(V)(O)(OR) (OR = isopropoxide (1), n-butanoxide (2), cyclobutanoxide (3), and α-tert-butylbenzylalkoxide (4)) react with pyridine to afford vanadium(IV) and 0.5 equiv of an aldehyde or ketone product. The role of pyridine in the reaction has been investigated. Both NMR and X-ray crystallography experiments indicate that pyridine coordinates to 1, which is in equilibrium with (dipic)V(V)(O)(O(i)Pr)(pyr) (1-Pyr). Kinetic studies of the alcohol oxidation suggest a pathway where the rate-limiting step is bimolecular and involves attack of pyridine on the C-H bond of the isopropoxide ligand of 1 or 1-Pyr. The oxidations of mechanistic probes cyclobutanol and α-tert-butylbenzylalcohol support a two-electron pathway proceeding through a vanadium(III) intermediate. The alcohol oxidation reaction is promoted by more basic pyridines and facilitated by electron-withdrawing substituents on the dipicolinate ligand. The involvement of base in the elementary alcohol oxidation step observed for the dipicolinate system is an unprecedented mechanism for vanadium-mediated alcohol oxidation and suggests new ways to tune reactivity and selectivity of vanadium catalysts.  相似文献   

8.
Intramolecular oxidations in N-alkyl-N'-heteroarylthioureas represent a facile and versatile synthetic pathway to fused heterocyclic systems including the bridgehead ones. This kind of heterocycles are the main feature in commom biologically active compounds.  相似文献   

9.
Cu(II)-nitroxyl radicals as catalytic galactose oxidase mimics   总被引:1,自引:0,他引:1  
Results from Hammett correlation studies and primary kinetic isotope effects for the CuCl-TEMPO catalysed aerobic benzyl alcohol oxidations are inconsistent with an oxoammonium based mechanism. We postulate a copper-mediated dehydrogenation mechanism, in which TEMPO regenerates the active Cu(II)-species. This mechanism is analogous to that observed for Galactose Oxidase and mimics thereof.  相似文献   

10.
The oxidations of methyl 4-nitrophenyl sulfide and sulfoxide by dimethyldioxirane, in acetone and mixtures of acetone with water, methanol, acetonitrile and hexane, have been followed by UV-Vis spectroscopy to monitor the decay of the substrates. The data show that, under all the conditions studied, both oxidations obey second-order kinetics. Grunwald-Winstein and Kamlet-Taft analyses of the influence of solvents on the second-order rate constants have been used to obtain mechanistic information on the two reactions. Activation parameters for the two oxidations in acetone and aqueous acetone have been calculated from rate constants for reactions in the temperature range 283-313 K and compared with those from sulfide and sulfoxide oxidations with other oxidants. For sulfoxide oxidations in acetone and 1-20% v/v water in acetone, the results support a concerted nucleophilic displacement by sulfur of oxygen from dimethyldioxirane with the rate being dependent on the solvent's polarity. Sulfide oxidations in acetone and 1-5% v/v water in acetone also proceed by a concerted mechanism. However, in the most polar solvent system studied, 20% v/v water in acetone, the mechanism changes in favour of a two-step reaction involving a betaine intermediate. Importantly, the sulfide oxidation shows a different solvent dependence to that of the sulfoxide, with the rate of oxidation being determined by the hydrogen bond donor capacity and electron-pair donicity of the solvent.  相似文献   

11.
We report the combination of a vacuum ultraviolet photoionization mass spectrometer, operating on the basis of synchrotron radiation, with an environmental reaction smog chamber for the first time. The gas- and pseudo-particle-phase products of OH-initiated isoprene photooxidation reactions were measured on-line and off-line, respectively, by mass spectrometry. It was observed that aldehydes, methacrolein, methyl vinyl ketone, methelglyoxal, formic acid, and similar compounds are the predominant gas-phase photooxidation products, whereas some multifunctional carbonyls and acids mainly exist in the particle phase. This finding is reasonably consistent with results of studies conducted in other laboratories using different methods. The results indicate that synchrotron radiation photoionization mass spectrometry coupled with a smog chamber is a potentially powerful tool for the study of the mechanism of atmospheric oxidations and the formation of secondary organic aerosols.  相似文献   

12.
Solvent–solute interactions in the peroxyacid oxidations are believed to be specific rather than electrostatic in nature. The kinetic solvent effects reported for the oxidations of organic sulfides, olefins, acetylenes, nitrosobenzenes, thioketones, and aryl sulfines reveal that in each case the rates are fast in nonbasic solvents (e.g., benzene, nitrobenzene, and halogenated hydrocarbons) relative to those in basic solvents such as DMF, dioxane, and alcohols. The rates in CF3CH2OH and aqueous or partially aqueous media are again higher than those in the basic solvents. This remakably similar pattern of sensitivity of rates to changes in the solvent nature appears to be characteristic of these oxidations as demonstrated by the existence of linear free-energy relationship. The behavior is best understood in terms of cyclic transition states for these oxidations in which charge separation is avoided by intra- or intermolecular hydrogen bonding depending on the nature of the solvent. Solvent effects on sulfoxide oxidation and on oxidations by hydrogen peroxide and t-butylhydroperoxide are also briefly discussed.  相似文献   

13.
The chemical reactivity of the model analog to compound I of the peroxidases resulting from the reaction of “chelated protohemin” and m-chloroperbenzoic acid is examined. The model intermediate shows no H-atom abstraction or O insertion activity and substrate reactivity depends only on the E12 value of the substrate. A Marcus theory treatment of the available kinetic data for HRP suggests that the oxidative pathway for substrate oxidations is an outer-sphere electron transfer. From the results of the model catalyzed oxidation of 1,4-cyclohexadiene to benzene, an alternate mechanism for cytochrome P-450 catalyzed hydroxylations is suggested.  相似文献   

14.
Selective oxidation of alcohols to the corresponding carbonyl compounds is one of the most fundamental reactions in organic synthesis. Traditional methods for this transformation generally rely on stoichiometric amount of oxidants represented by Cr(VI) or DMSO reagents, though their synthetic utility is encumbered by unpleasant waste materials. From ecological and atom-economic viewpoints, catalytic aerobic oxidation is much more advantageous because molecular oxygen is ubiquitous and the byproduct is basically non-toxic water or hydrogen peroxide. On the other hand, phenol derivatives undergo oxidative coupling, forming C-C or C-O bond, through radical intermediates coupled with an electron-transfer process. Molecular oxygen is also well known to serve as electron acceptor in this reaction. Thus, a variety of transition metal complexes have so far been examined for aerobic oxidations of alcohols and phenols, and high catalytic activities have been achieved in some cases. However, stereo- and chemo-selective aerobic oxidations are still limited in number and are of current interest. Presented in this paper is our recent studies on catalytic aerobic oxidations with photoactivated nitrosyl ruthenium-salen complexes, including asymmetric oxidation of secondary alcohols to ketones (kinetic resolution), enantioselective oxidative coupling of 2-naphthols to binaphthols and oxygen-radical bicyclization of 2,2'-dihydroxystilbene, chemoselective oxidation of primary alcohols to aldehydes and diols to lactols, and asymmetric desymmetrization of meso-diols to lactols.  相似文献   

15.
Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle‐type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water‐soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds.  相似文献   

16.
A detailed mechanism for the oxidation of aryl sulfides by peroxymonocarbonate ion in cosolvent/water media is described. Kinetic studies were performed to characterize the transition state, including a Hammett correlation and variation of solvent composition. The results are consistent with a charge-separated transition state relative to the reactants, with an increase of positive charge on the sulfur following nucleophilic attack of the sulfide at the electrophilic oxygen of peroxymonocarbonate. In addition, an average solvent isotope effect of 1.5 +/- 0.2 for most aryl sulfide oxidations is consistent with proton transfer in the transition state of the rate-determining step. Activation parameters for oxidation of ethyl phenyl sulfide in tert-butyl alcohol/water are reported. From the pH dependence of oxidation rates and (13)C NMR equilibrium experiments, the estimated pK(a) of peroxymonocarbonate was found to be approximately 10.6.  相似文献   

17.
Oxidations of the NADH analogues 10-methyl-9,10-dihydroacridine (AcrH2) and N-benzyl 1,4-dihydronicotinamide (BNAH) by cis-[RuIV(bpy)2(py)(O)]2+ (RuIVO2+) have been studied to probe the preferences for hydrogen-atom transfer vs hydride transfer mechanisms for the C-H bond oxidation. 1H NMR spectra of completed reactions of AcrH2 and RuIVO2+, after more than approximately 20 min, reveal the predominant products to be 10-methylacridone (AcrO) and cis-[RuII(bpy)2(py)(MeCN)]2+. Over the first few seconds of the reaction, however, as monitored by stopped-flow optical spectroscopy, the 10-methylacridinium cation (AcrH+) is observed. AcrH+ is the product of net hydride removal from AcrH2, but hydride transfer cannot be the dominant pathway because AcrH+ is formed in only 40-50% yield and its subsequent oxidation to AcrO is relatively slow. Kinetic studies show that the reaction is first order in both RuIVO2+ and AcrH2, with k = (5.7 +/- 0.3) x 10(3) M(-1) s(-1) at 25 degrees C, DeltaH(double dagger) = 5.3 +/- 0.3 kcal mol(-1) and DeltaS(double dagger) = -23 +/- 1 cal mol(-1) K(-1). A large kinetic isotope effect is observed, kAcrH2/kAcrD2 = 12 +/- 1. The kinetics of this reaction are significantly affected by O2. The rate constants for the oxidations of AcrH2 and BNAH correlate well with those for a series of hydrocarbon C-H bond oxidations by RuIVO2+. The data indicate a mechanism of initial hydrogen-atom abstraction. The acridinyl radical, AcrH*, then rapidly reacts by electron transfer (to give AcrH+) or by C-O bond formation (leading to AcrO). Thermochemical analyses show that H* and H- transfer from AcrH2 to RuIVO2+ are comparably exoergic: DeltaG degrees = -10 +/- 2 kcal mol(-1) (H*) and -6 +/- 5 kcal mol(-1) (H-). That a hydrogen-atom transfer is preferred kinetically suggests that this mechanism has an equal or lower intrinsic barrier than a hydride transfer pathway.  相似文献   

18.
Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle‐type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water‐soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds.  相似文献   

19.
Recent studies revealed that norcarane (bicyclo[4.1.0]heptane) is oxidized to 2-norcarene (bicyclo[4.1.0]-hept-2-ene) and 3-norcarene (bicyclo[4.1.0]hept-3-ene) by iron-containing enzymes and that secondary oxidation products from the norcarenes complicate mechanistic probe studies employing norcarane as the substrate (Newcomb, M.; Chandrasena, R. E. P.; Lansakara-P., D. S. P.; Kim, H.-Y.; Lippard, S. J.; Beauvais, L. G.; Murray, L. J.; Izzo, V.; Hollenberg, P. F.; Coon, M. J. J. Org. Chem. 2007, 72, 1121-1127). In the present work, the product profiles from the oxidations of 2-norcarene and 3-norcarene by several enzymes were determined. Most of the products were identified by GC and GC-mass spectral comparison to authentic samples produced independently; in some cases, stereochemical assignments were made or confirmed by 2D NMR analysis of the products. The enzymes studied in this work were four cytochrome P450 enzymes, CYP2B1, CYPDelta2E1, CYPDelta2E1 T303A, and CYPDelta2B4, and three diiron-containing enzymes, soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath), toluene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, and phenol hydroxylase (PH) from Pseudomonas stutzeri OX1. The oxidation products from the norcarenes identified in this work are 2-norcaranone, 3-norcaranone, syn- and anti-2-norcarene oxide, syn- and anti-3-norcarene oxide, syn- and anti-4-hydroxy-2-norcarene, syn- and anti-2-hydroxy-3-norcarene, 2-oxo-3-norcarene, 4-oxo-2-norcarene, and cyclohepta-3,5-dienol. Two additional, unidentified oxidation products were observed in low yields in the oxidations. In matched oxidations, 3-norcarene was a better substrate than 2-norcarene in terms of turnover by factors of 1.5-15 for the enzymes studied here. The oxidation products found in enzyme-catalyzed oxidations of the norcarenes are useful for understanding the complex product mixtures obtained in norcarane oxidations.  相似文献   

20.
Electrochemical studies on a new class of diruthenium(II,III) compounds were done. The complexes having a polar arrangement of ligands across the diruthenium unit in Ru2Cl(hp)4(Hhp), Ru2Cl(chp)4 and Ru2Cl(PhNpy)4 where Hhp, Hchp and PhNHpy are 2-hydroxypyridine, 6-chloro-2-hydroxypyridine, and 2-anilinopyridine, respectively, undergo two or more oxidations and reductions. The metal centered reductions in the range of +0.1 to ?0.75 V and oxidations in the range +0.5 to +1.2 V are discussed and compared with diruthenium carboxylato and amidato complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号